9 مصاحف الكتاب الاسلامي

 

انكس ن فتح الباري

الرابط

 https://drive.google.com/file/d/1oQ6F4ip_x4FPYXEL9by5sq_at0QyoUMM/view?usp=sharing

اندكس / جاهز للالصاق بأي موفع

Translate

الأربعاء، 6 أبريل 2022

الانفجار العظيم



الانفجار العظيم من ويكيبيديا، الموسوعة الحرة
 
 
 
وفقًا لنموذج الانفجار العظيم، فإن الفضاء الكوني يتمدد من حالة حارة شديدة الكثافة، وما زال يتمدد إلى اليوم. يوضح هذا المخطط تمدد مسطح لجزء من الكون، حيث تتباعد المجرات مع التمدد.

الانفجار العظيم في علم الكون الفيزيائي هو النظرية السائدة لتفسير نشأة الكون.
تعتمد فكرة النظرية على أن الكون كان بالماضي في حالة حارة شديدة الكثافة فتمدد، وأن الكون كان يومًا جزءًا واحداَ عند نشأته. بعض التقديرات الحديثة تُقدّر حدوث تلك اللحظة قبل 13.8 مليار سنة، والذي يُعد عمر الكون.

وبعد التمدد الأول، بَرَدَ الكون بما يكفي لتكوين جسيمات دون ذرية كالبروتونات والنيترونات والإلكترونات. ورغم تكوّن نويّات ذرية بسيطة خلال الثلاث دقائق التالية للانفجار العظيم، إلا أن الأمر احتاج آلاف السنين قبل تكوّن ذرات متعادلة كهربيًا. معظم الذرات التي نتجت عن الانفجار العظيم كانت من الهيدروجين والهيليوم مع القليل من الليثيوم. ثم التئمت سحب عملاقة من تلك العناصر الأولية بالجاذبية لتُكوّن النجوم والمجرات، وتشكّلت عناصر أثقل من خلال تفاعلات الانصهار النجمي أو أثناء تخليق العناصر في المستعرات العظمى.

تُقدّم نظرية الانفجار العظيم شرحاً وافياً لمجموعة واسعة من الظواهر المرئية التي تشاهد وترصد بتلسكوبات ضخمة وتلسكوبات فضائية مختلفة، بما في ذلك وفرة من ارصاد الإشعاعات الكونية والخلفية الإشعاعية للكون والبنية الضخمة للكون وقانون هابل.
ونظرًا لكون المسافة بين المجرات تزداد يوميًا، فبالتالي كانت المجرات في الماضي أقرب إلى بعضها البعض. ومن الممكن استخدام القوانين الفيزيائية لحساب خصائص الكون كالكثافة ودرجة الحرارة في الماضي بالتفصيل.

وبالرغم من أنه يمكن للمسرعات الكبيرة للجسيمات استنساخ تلك الظروف، لتأكيد وصقل تفاصيل نموذج الانفجار العظيم، إلا أن تلك المسرعات لم تتمكن حتى الآن إلا البحث في الأنظمة عالية الطاقة. وبالتالي، فإن حالة الكون في اللحظات الأولى للانفجار العظيم مبهمة وغير مفهومة، ولا تزال مجالاً للبحث. كما لا تقدم نظرية الانفجار العظيم أي شرح للحالة الأولية قبل الانفجار العظيم، بل تحاول تفسير نشأة وتطور الكون منذ تلك اللحظة الأولى بعد الانفجار؛ إذ بالانفجار يبدأ الزمان والمكان، ولا ترى الفيزياء زمنا قبل الانفجار العظيم، فقد بدأ به الزمن من وجهة نظر الفيزيائيين.

قدّم الكاهن الكاثوليكي والعالم البلجيكي جورج لومتر الفرضية التي أصبحت لاحقًا نظرية الانفجار العظيم عام 1927. ومع مرور الوقت، انطلق العلماء من فكرته الأولى حول تمدد الكون لتتبُّع أصل الكون، وما الذي أدى إلى تكوّن الكون الحالي. اعتمد الإطار العام لنموذج الانفجار العظيم على نظرية النسبية العامة لأينشتاين، وعلى تبسيط فرضيات كتجانس النظام وتوحد خواص الفضاء. وقد صاغ ألكسندر فريدمان المعادلات الرئيسية للنظرية، وأضاف فيليم دي سيتر صيغ بديلة لها. وفي عام 1929، اكتشف إدوين هابل أن المسافات إلى المجرات البعيدة مرتبطة بقوة بانزياحها الأحمر. استُنتج من ملاحظة هابل أن جميع المجرات والعناقيد البعيدة لها سرعة ظاهرية تختلف عن فكرتنا بأنها كلما بَعُدت، زادت سرعتها الظاهرية، بغض النظر عن الاتجاه.
ورغم انقسام المجتمع العلمي يومًا بين نظريتي تمدد الكون بين مؤيد لنظرية الانفجار العظيم، ومؤيد لنظرية الحالة الثابتة،

إلا أن التأكيد بالملاحظة والرصد على صحة سيناريو الانفجار العظيم جاء مع اكتشاف الخلفية الإشعاعية للكون عام 1964، واكتشاف أن طيف تلك الخلفية الإشعاعية يتطابق مع الإشعاع الحراري للأجسام السوداء. منذ ذلك الحين، أضاف علماء الفيزياء الفلكية إضافات رصدية ونظرية إلى نموذج الانفجار العظيم، وتمثيلها الوسيطي كنموذج لامبدا-سي دي إم الذي هو بمثابة إطار للأبحاث الحالية في علم الكونيات النظري.
جزء من سلسلة عن
علم الكون الفيزيائي
صورة كاملة للسماء التقطها مسبار ويلكنسون على مدى تسع سنوات

الانفجار العظيمالفضاء الكوني
عمر الكون
التسلسل الزمني للانفجار العظيم

بدايات الكون

التمددالمستقبل

التركيبالبنية

علم الفلك الرصدي

العلماء

علم الكون الفيزيائي

Category page تصنيف
شعار بوابة بوابة علم الكون

عنت


محتويات

1 تمهيد
1.1 التسلسل الزمني للانفجار العظيم
1.1.1 التفرد
1.1.2 التضخم الكوني ونشأة الباريونات
1.1.3 التبرد
1.1.4 تشكل البنية
1.1.5 تسارع تمدد الكون
1.2 الافتراضات الضمنية
1.3 تمدد الفضاء
1.4 الآفاق
2 التاريخ
2.1 التسمية
2.2 التطور
3 أدلة رصدية
3.1 قانون هابل وتمدد الفضاء
3.2 الخلفية الإشعاعية للكون
3.3 وفرة العناصر الأولية
3.4 تطور المجرات وتوزيعها
3.5 السحب الغازية الأولى
3.6 أدلة أخرى
4 قضايا متعلقة في الفيزياء
4.1 تباين الباريونات
4.2 الطاقة المظلمة
4.3 المادة المظلمة
4.4 عمر التجمعات الكروية
5 سبب الحدوث
6 مشاكل
6.1 مشكلة الأفق
6.2 مشكلة التسطُّح
6.3 مشكلة أحادية القطبية
7 مصير الكون في نظرية الانفجار العظيم
8 اعتقادات خاطئة
9 تأملات فيزيائية في نظرية الانفجار العظيم
10 التفسيرات الدينية والفلسفية
11 هوامش
12 انظر أيضاً
13 مراجع
13.1 كتب
14 وصلات خارجية

تمهيد
الجدول الزمني للطبيعة
عرض • ناقش • عدل
-13 —

-12 —

-11 —

-10 —

-9 —

-8 —

-7 —

-6 —

-5 —

-4 —

-3 —

-2 —

-1 —

0 —
عودة التأين
عصر
طغيان المادة
تسارع التوسع
الماء
حياة وحيدات الخلية
التركيب الضوئي
حياة
متعددة الخلايا
الفقاريات
العصور المظلمة

الكون (−13.80)

النجوم القديمة

المجرة القديمة

الكوازار القديم/ثقب أسود فائق

أوميجا قنطورس

المرأة المسلسلة

أذرع درب التبانة

تشكل NGC 188 العنقودية

رجل القنطور

الأرض/المجموعة الشمسية

أشكال الحياة القديمة

الأكسجين القديم

الأكسجين الجوي

التكاثر الجنسي

الحيوانات/النباتات البدائية

الانفجار الكامبري

الثدييات البدائية

القرود البدائية
الـحــيــاة
تأشير ونقر
(مليار سنة مضت)

تحتوي الصورة أعلاه على روابط قابلة للنقر
(أنظر أيضا: جدول زمني للحياة.)
التسلسل الزمني للانفجار العظيم

Crystal Clear app kdict.png مقالة مفصلة: التسلسل الزمني للانفجار العظيم

التفرد

Crystal Clear app kdict.png طالع أيضًا: التفرد الجذبوي

يقودنا تتبع تمدد الكون عبر الزمن إلى حقيقة أن الكون كان في الماضي في حالة شديدة الكثافة والحرارة.
ويشير هذا التفرد إلى تعطُّل تطبيق النسبية العامة، فلا يمكننا تتبع حالة التفرد تلك على وجه اليقين أكثر من فترة نهاية حقبة بلانك. ويسمى هذا التفرد أحيانًا "الانفجار العظيم"، ولكن هذا المصطلح قد يشير أيضًا إلى الحالة الأولى(1) التي كانت أكثر حرارة وكثافة، التي تعتبر لحظة ميلاد الكون. وبناءً على قياسات التمدد مقارنةً بنموذج مستعر أعظم من النوع أ وقياسات التقلبات الحرارية في الخلفية الإشعاعية للكون وقياسات الارتباط بين المجرات، أمكن حساب عمر الكون وتقديره بنحو 13.798 ± 0.037 مليار سنة.

وقد أدى التوافق بين هذه القياسات الثلاثة المستقلة عن بعضها البعض إلى دعم نموذج لامبدا-سي دي إم بقوة، والذي يصف بالتفصيل محتويات الكون.
التضخم الكوني ونشأة الباريونات

Crystal Clear app kdict.png مقالات مفصلة: التضخم الكوني نشأة الباريونات

تخضع الأطوار الأولى للانفجار العظيم للعديد من التكهنات. ففي النماذج الأكثر شيوعًا، كان الكون ممتلئًا بصورة متجانسة وقياسية بجسيمات ذات كثافة طاقة ودرجات حرارة وضغوط هائلة، وأنه تمدد وبَرُد بسرعة فائقة. وخلال ما يقرب من 10 −37 ثانية في التمدد، تسبب تحول طوري في تضخُّم الكون ونموه نموًا أُسيًا.
وبعد توقف التضخم، تألّف الكون من بلازما كوارك-غلوونية، وغيرها من جميع الجسيمات الأولية الأخرى. كانت درجات الحرارة في تلك الحالة مرتفعة حتى تسنّى تحرك الجزيئات عشوائيًا وفق سرعات نسبية، ونتجت أزواج ومضاداتها من كل نوع بصفة مستمرة، بل وتلاشى بعضها عبر الاصطدامات. وفي مرحلة ما، حدث تفاعل يسمى بنشأة الباريونات لم يحافظ على رقم باريون، مما أدى إلى وجود فائض صغير جدًا من الكواركات والليبتونات يفوق مضادات الكوارك ومضادات الليبتونات بنحو جزء واحد من 30 مليون جزء. أدى ذلك إلى هيمنة المواد على المواد المضادة في الكون الحالي.
التبرد

Crystal Clear app kdict.png مقالات مفصلة: تخليق الانفجار العظيم النووي الخلفية الإشعاعية للكون

منظر بانورامي لكامل الكون باستخدام أشعة تحت حمراء تُظهر توزيع المجرات خارج درب التبانة. المجرات مقسّمة لونيًا وفق انزياحها الأحمر.
في تاريخ الكون، هناك فرضية بأن الموجات الثقالية نشأت عن التضخم الكوني الناتج عن التمدد تمامًا بعد الانفجار العظيم.ظلت كثافة الكون وحرارته في انخفاض، وبالتالي تناقصت طاقة أي من جسيماته. ثم نقلت الأطوار الانتقالية كسر تناظر القوى الأساسية للفيزياء ومتغيرات الجسيمات الأولية إلى وضعها الحالي.

ففي خلال حوالي 10−11ثانية، أصبحت حالة الكون أكثر استقرارًا، حيث انخفضت طاقات الجسيمات إلى القيم التي يمكن تحقيقها في تجارب فيزياء الجسيمات. وفي حوالي 10−6 ثانية، تجمّعت الكواركات والغلوونات لتكوين الباريونات مثل البروتونات والنيوترونات. أدى فائض صغير من الكواركات مقابل مضادات الكوارك إلى فائض صغير من الباريونات مقابل مضادات الكوارك. وبانخفاض درجات الحرارة، لم تعد درجة الحرارة تكفي لتكوين أزواج جديدة من البروتون-مضاد البروتون وكذلك أزواج النيوترونات-مضادات النيوترونات، لذا نتجت على الفور عمليات تلاشي ضخمة، تبقى منها فقط واحد من كل 1010 من البروتونات والنيوترونات الأصلية، لم يتبق أي من مضاداتها. كذلك حدثت عملية مشابهة خلال ثانية واحدة للإلكترونات والبوزيترونات. وبعد عمليات التلاشي تلك، توقفت باقي البروتونات والنيوترونات والإلكترونات عن التحرك بنسبية، وشكّلت الفوتونات غالبية كثافة طاقة الكون (مع مساهمة بسيطة من النيوترينوات).

وخلال دقائق من تمدد الكون، عندما كانت درجة الحرارة حوالي مليار كلفن والكثافة تساوي تقريبًا كثافة الهواء، توحّدت النيوترونات مع البروتونات لتشكيل ديوتريومات الكون وأنوية ذرات الهيليوم في عملية تسمى تخليق الانفجار العظيم النووي.
وظلت معظم البروتونات منفصلة كأنوية لذرات الهيدروجين. ومع تبرُّد الكون، سيطرت جاذبية إشعاع الفوتونات على كثافة طاقة الكتلة الباقية من المادة. وبعد حوالي 379,000 سنة، اتحدت الإلكترونات مع أنوية الذرات (معظمها من الهيدروجين)؛ وبالتالي انفصل الإشعاع عن المادة، وانطلق في الفضاء دون عوائق إلى حد كبير. وتعرف بقايا هذا الإشعاع باسم الخلفية الإشعاعية للكون.
تشكل البنية

Crystal Clear app kdict.png مقالة مفصلة: تشكل البنية

على مدى فترة طويلة من الزمن، تجاذبت المناطق الأكثر كثافة من المادة شبه الموزعة بتجانس قليلاً نحو المادة، وبالتالي نمت بكثافة أكبر، وتشكّلت سحب غازية ونجوم ومجرات وبقية أجزاء البنية الفلكية الأخرى التي يمكن ملاحظتها اليوم. اعتمدت تفاصيل تلك العملية على كمية ونوع مادة الكون. وتنقسم أنواع المادة إلى مادة مظلمة باردة ومظلمة دافئة ومظلمة حارة وباريونة. وقد أظهرت أفضل القياسات المتاحة (من خلال مسبار ويلكينسون لقياس اختلاف الموجات الراديوية) أن البيانات تتوافق بشكل جيد مع فرضية نموذج لامبدا-سي دي إم التي تفترض أن المادة المظلمة كانت باردة (حيث اختفت المادة المظلمة الدافئة في وقت مبكر أثناء حقبة إعادة التأين
)، وقدّرت أنها تُشكّل حوالي 23٪ من نسبة المادة/طاقة الكون، بينما تُشكّل المادة الباريونية حوالي 4.6٪. وفي "نموذج التمدد" الذي يتضمن مادة مظلمة ساخنة في شكل نيوترينوات، إذا كانت "الكثافة الفيزيائية للباريون" bh2 تقدر بحوالي 0.023 (وهي تختلف عن "كثافة الباريون" Ωb التي يُعبّر عنها كجزء من النسبة الإجمالية لكثافة المادة/الطاقة، والتي أُشير إليها أعلاه بحوالي 0.046)، وكثافة المادة المظلمة الباردة المصاحبة Ωch2 حوالي 0.11، فإن كثافة النيوترينو المصاحب تُقدّر بأقل من 0.0062.
تسارع تمدد الكون

Crystal Clear app kdict.png مقالة مفصلة: تسارع تمدد الكون

رصد للمجموعة المجرية أبيل 2744 بواسطة مرصد هابل الفضائي.هناك دلائل مستقلة من رصد المستعرات العظمى من الدرجة Ia والخلفية الإشعاعية للكون تُظهر أن الكون اليوم تسيطر عليه شكل غامض من الطاقة تعرف باسم الطاقة المظلمة التي تتخلل كامل الفضاء. وتُقدّر نتائج الرصد أن 73٪ من كثافة الطاقة الكلية للكون اليوم تتواجد في تلك الصورة من الطاقة. ومن المرجّح أن الكون في بداية نشأته كان مغمورًا بالطاقة المظلمة، ولكن مع تضايق المساحة وتقارب كل شيء من بعضه البعض، سيطرت الجاذبية، وكبحت تمدد الكون ببطء. وفي نهاية المطاف، وبعد عدة مليارت من سنوات تمدد الكون، تسبب تزايد الطاقة المظلمة في تسارع تمدد الكون ولكن ببطء. وتتخذ الطاقة المظلمة في أبسط صيغها هيئة مصطلح الثابت الكوني في معادلات أينشتاين للمجال في النسبية العامة، ولكن تكوينها وآليتها غير معروفين، وبشكل أعم، ما زالت تفاصيل معادلة حالتها وعلاقتها مع نظرية النموذج العياري لفيزياء الجسيمات قيد البحث رصديًا ونظريًا.

كل هذا التطور الكوني بعد حقبة التضخم الكوني يمكن وصفها بدقة وفق نموذج لامبدا-سي دي إم، الذي يستخدم الأطر المستقلة لميكانيكا الكم والنسبية العامة لأينشتاين. وكما أشير أعلاه، لا يوجد نموذج موثوق يصف ما حدث قبل 10−15 ثانية من نشأة الكون. ويبدو أن هناك حاجة إلى نظرية جاذبية كمية موحدة جديدة لكسر هذا الحاجز لفهم تلك الحقبة من تاريخ الكون، والتي تعد حاليًا إحدى أعظم المسائل التي لم تُحلّ في الفيزياء.
الافتراضات الضمنية
تعتمد نظرية الانفجار الكبير على فرضيتين رئيسيتين: شمولية القوانين الفيزيائية والمبدأ الكوني الذي يفترض أنه في المقاييس الكبيرة، يُوصف الكون بأنه فضاء متجانس ومُوحّد الخواص. كانت تلك الأفكار في البداية من المُسلّمات، ولكن اليوم هناك جهود لاختبار كل منها. فعلى سبيل المثال، فإن الفرضية الأولى تم اختبارها من خلال الرصد الذي أظهر أن أكبر انحراف محتمل لثابت البناء الدقيق خلال جزء كبير من عمر الكون يُقدّر بنحو 10−5.

كما استخدمت النسبية العامة لعمل اختبارت صارمة على مقاييس النظام الشمسي والنجوم الثنائية.

وإذا افترضنا أن الكون متجانس الخواص كما يُرى من الأرض، فإن المبدأ الكوني يمكن استنتاجه من مبدأ كوبرنيكوس البسيط، الذي ينص على أنه لا يوجد أفضلية. ولذا، فقد تم التحقق من صحة المبدأ الكوني إلى مستوى 10−5 عبر رصد الخلفية الإشعاعية للكون. كما تم قياس تجانس الكون على المقاييس الأكبر حتى مستوى 10٪.
تمدد الفضاء

Crystal Clear app kdict.png مقالات مفصلة: إحداثيات روبرتسون-ووكر تمدد الكون

تصف النسبية العامة الزمكان وفق نظام متري، يمكن من خلاله تحديد المسافات التي تفصل أي نقطة عن نقطة قريبة. هذه النقاط قد تكون مجرات أو نجوم أو أشياء أخرى، هذه النقاط نفسها يتم تحديدها باستخدام متعدد شعب أو "شبكة" تشمل كل الزمكان. ينص المبدأ الكوني أن هذا النظام المتري يجب أن يكون متجانس ومُوحّد الخواص في المقاييس الكبيرة يمكن تمييزه باستخدام إحداثيات روبرتسون-ووكر. هذه الإحداثيات تحتوي على مقياس يصف تغيّر حجم الكون عبر الزمن، مما يسّر اختيار نظام إحداثي مناسب يدعى مسافة المسايرة. وفق هذا النظام الإحداثي تتمدد الشبكة بتمدد الكون، وتبقى الأجسام التي تتحرك بتمدد الكون في مواضع ثابتة على الشبكة، وتبقى مسافاتها الإحداثية (مسافات المسايرة) ثابتة، في الوقت الذي تتزايد فيه المسافات الفعلية بين الأجسام إطراديًا بتمدد الكون.

لا يعد الانفجار العظيم انفجارًا للمادة يتحرك نحو الخارج لملء كون فارغ. ولكن بمرور الوقت يتمدد الكون في كل إتجاه وتتزايد المسافات الفعلية بين الأجرام السماوية، وهذا ما تشير إليه الأرصاد الفلكية الحديثة. ونظرًا لكون إحداثيات روبرتسون-ووكر تفترض توزيعًا منتظمًا للكتلة والطاقة، فإنها تنطبق فقط على القياسات الكبيرة، أما النطاقات المحدودة من المادة مثل مجرتنا المترابطة تجاذبيًا فلا تنطبق عليها نظرية التمدد واسع النطاق كما في الفضاء خارج مجرتنا.
الآفاق
من الخواص الهامة لزمكان الانفجار العظيم هو وجود الآفاق. ونظرًا لحقيقة أن الكون له عمر محدد، وأن الضوء ينتقل بسرعة محددة، فقد تكون هناك أحداث حدثت في الماضي لم يتوفر لها الوقت ليتمكن ضوئها من الوصول إلينا، مما جعل هناك حدًا للمسافة الأفقية التي يمكن رصدها. على العكس، نظرًا لتمدد الفضاء، تبتعد الأجسام البعيدة بسرعة أكبر من أي وقت مضى، وقد لا يُدرك الضوء المنبعث بواسطتنا اليوم أبدًا الأجسام البعيدة للغاية. فبالتالي، يُمكن تعريف الأفق المستقبلي بأنه الأفق الذي يحدد الأحداث المستقبلية التي سنتمكن من التأثير فيها. لذا فإن وجود أي نوع من الآفاق يعتمد على تفاصيل نموذج إحداثيات روبرتسون-ووكر الذي يصف كوننا. كما أن فهمنا للكون يعتمد على افتراضنا وجود أفق قديم في العصور السحيقة، على الرغم من أنه واقعيًا نظرتنا أيضًا محدودة لغموض الكون في لحظاته الأولى، أي أن رؤيتنا لا يمكنها أن تمتد إلى هذا الماضي البعيد، كما أنه إذا استمر الكون في التسارع، سيكون هناك أفق مستقبلي.
التاريخ
حقل هابل العميق الأقصى (XDF)
صورة (XDF) مقارنة مع حجم للقمر، عدة آلاف من المجرات كل منها تتكون من مليارات النجوم في مساحة العرض الصغيرة.
صورة (XDF) التقطت عام 2012 يظهر فيها عدة بُقَع من الضوء كل منها يُمثّل مجرة بعضها عمره نحو 13.2 مليار سنة،
ويُقدّر عدد مجرات الكون بحوالي 200 مليار مجرة
صورة (XDF) تُظهر مجرات مكتملة في الإطار الأول عمرها أقل من 5 مليار سنة، وأخرى شبه مكتملة عمرها بين 5 إلى 9 مليار سنة في الإطار الثاني، ومجرات بدائية مصحوبة بنجوم ملتهبة عمرها أكثر من 9 مليار سنة في الإطار الثالث.

Crystal Clear app kdict.png طالع أيضًا: خط زمني لعلم الكون

التسمية
كان الفلكي الإنجليزي فريد هويل أول من أطلق مصطلح «الانفجار العظيم» (بالإنجليزية: Big Bang)‏ خلال مقابلة له مع هيئة الإذاعة البريطانية سنة 1949 م. ومن الشائع بين الناس أن هويل الذي كان يفضل نموذج "الحالة الثابتة" الكوني، كان يقصد من تلك التسمية السخرية، إلا أن هويل نفسه نفى ذلك صراحةً، وقال أن التسمية كانت للفت النظر وتسليط الضوء على الفرق بين النموذجين لمستمعي الراديو.
التطور
تطورت نظرية الانفجار العظيم من خلال رصد بنية الكون والأبحاث النظرية. ففي سنة 1912 م، قام فيستو سليفر بأول قياس لتأثير دوبلر للسديم الحلزوني (السديم الحلزوني هو مُسمّى قديم للمجرات الحلزونية)، وسرعان ما اكتشف أن تقريبًا جميع تلك السُدُم كانت منحسرة عن الأرض، في الوقت الذي كان فيه نزاع شابلي-كورتيس المثير للجدل محتدمًا حول ما إذا كانت هذه السدم "أكوان جُزُرية" خارج مجرتنا درب التبانة. وبعد عشر سنوات، استنتج عالم الكون الفيزيائي والرياضياتي الروسي ألكسندر فريدمان معادلات فريدمان من معادلات أينشتاين للمجال، مُبيّنًا أن الكون قد يكون يتمدد مُخالفًا بذلك نموذج الكون الساكن التي كان أينشتاين يؤيدها وقتئذ. وفي سنة 1924 م، أظهر قياس إدوين هابل لمسافة أقرب السدم الحلزونية، أن تلك النظم هي بالتأكيد مجرات أخرى. وبصورة مستقلة، استنتج الكاهن الكاثوليكي والفيزيائي جورج لوميتر عام 1927 معادلات فريدمان، وتوصّل إلى أن انحسار السدم يُستدل منه على تمدد الكون. وفي سنة 1931 م، ذهب لوميتر أبعد من ذلك وافترض أنه نتيجة التمدد الواضح للكون، فلا بد لو عُدنا بالزمن أن نجد في لحظة ما كانت كل مادة الكون مجتمعة في نقطة ما على هيئة "ذرة بدائية" عندها بدأ الزمن والفضاء في النشوء.بداية من سنة 1924 م، وضع هابل سلسلة من مؤشرات المسافة التي سبقت وضع سلم المسافات الكونية مستخدمًا مقراب هوبر الذي قطره 100-بوصة (2,500 مـم) في مرصد جبل ويلسون. سمح له ذلك بتقدير المسافات إلى المجرات التي كان انزياحها الأحمر قد قِيس بالفعل، أغلبها بواسطة سيفلر. وفي سنة 1929 م، اكتشف هابل وجود علاقة بين المسافة وسرعة الانحسار (يعرف الآن بقانون هابل)، وهو ما توقعه لوميتر وفقًا للمبدأ الكوني.في عشرينيات وثلاثينيات القرن الماضي، كان معظم علماء الكون الفيزيائي البارزين من مؤيدي فرضية الحالة الثابتة السرمدية للكون، وتذمّر العديد منهم من القول بأن نشأة الزمن نتيجة انفجار عظيم مستوحى من مفاهيم دينية، وهو الاعتراض الذي ردده مؤيدو نظرية الحالة الثابتة فيما بعد. عزّز هذا التصور حقيقة أن مُنشأ نظرية الانفجار العظيم هو الكاهن الروماني الكاثوليكي جورج لوميتر. كان آرثر ستانلي إدنغتون من المؤمنين برأي أرسطو أن الكون ليس له بداية زمنية، وأن المادة أصلها سرمدي، مما جعله يبغض فكرة نشأة الزمن. أما لوميتر، فقد اعتقد بأنه: «إذا كان العالم قد بدء بكمّ واحد، فإن مفاهيم المكان والزمان لن يكون لها معنى عند نشأة العالم؛ وستبدأ فقط في أن يكون لها معنى معقول عند انقسام الكمّ الأصلي إلى عدد كاف من الكمّات. وإذا كانت هذه الفرضية صحيحة، فستكون أسطورة الخلق قد حدثت قبل وقت قليل من بداية الزمان والمكان.» وخلال الثلاثينيات، ظهرت أفكار أخرى غير قياسية لتفسير أرصاد هابل، ومنها نموذج ميلن والكون المتذبذب (اقترحه فريدمان في البداية، ثم دافع عنه ألبرت أينشتاين وريتشارد تولمان) وفرضية الضوء المُرهق لفريتز زفيكي.بعد الحرب العالمية الثانية، ظهرت فرضيتان متميزتان. الأولى نظرية الحالة الثابتة لفريد هويل؛ إذ وفقًا لها فإنه لا بد من تولُّد مادة جديدة في حالة تمدد الكون. يفترض هذا النموذج أن الكون يبقى كما هو في أي وقت من الزمن. والثانية كانت نظرية الانفجار العظيم للوميتر التي دافع عنها وطوّرها جورج جاموف الذي وضع فكرة تخليق الانفجار العظيم النووي (BBN)، والذي شارك رالف ألفر وروبرت هيرمان في التكهن بوجود الخلفية الإشعاعية للكون (CMB). ومن المفارقات، أن هويل هو من صاغ العبارة التي جاء منها اسم نظرية لوميتر، عندما أشار إليها بقوله: «فكرة هذا الانفجار العظيم» خلال مقابلته مع راديو هيئة الإذاعة البريطانية في مارس 1949 م. ولفترة من الوقت، انقسم المؤيدون بين هاتين النظريتين. وفي نهاية المطاف، أعطت الأدلة الرصدية أفضلية للانفجار العظيم في مقابل الحالة الثابتة. كان اكتشاف وتأكيد وجود الخلفية الإشعاعية للكون سنة 1964 م

حاسمًا في جعل نظرية الانفجار العظيم أفضل نظرية حول أصل ونشأة الكون. يسعى الكثير من العمل الحالي في علم الكونيات إلى فهم كيفية تكوّن المجرات وفق نظرية الانفجار العظيم، ومحاولة فهم فيزياء الكون في الأزمنة السحيقة، والتوفيق بين الأرصاد والنظرية الأساسية.

في نهاية عقد التسعينيات، تحقق تقدم كبير في تفسير الانفجار العظيم نتيجة تقدم تقنيات المقراب وتحليل البيانات المستخلصة عبر الأقمار الصناعية مثل مستكشف الخلفية الكونية
ومرصد هابل الفضائي ومسبار ويلكينسون لقياس اختلاف الموجات الراديوية.

ولدى علماء الكون الآن قياسات مُحكمة ودقيقة إلى حد ما لكثير من متغيرات نموذج الانفجار العظيم، مكّنتهم من الاكتشاف غير المتوقع بأن تمدد الكون يبدو كما لو كان يتسارع.
أدلة رصدية
تصوُّر فني للقمر الصناعي مسبار ويلكينسون لقياس اختلاف الموجات الراديوية الذي يجمع بيانات لمساعدة العلماء على فهم الانفجار العظيم.
إن صورة الانفجار العظيم ترسّخت بقوة بالبيانات التي جُمعت من كل منطقة بهدف إثبات فساد خصائصه العامة.
—لورنس كراوس
إن أقدم الأدلة الرصدية وأكثرها صراحةً في إثبات فعالية نظرية الانفجار العظيم هو تمدد الكون وفق قانون هابل (مُمثّلاً في الانزياح الأحمر للمجرات)، واكتشاف وقياس الخلفية الإشعاعية للكون والوفرة النسبية للعناصر الخفيفة الناتجة عن تخليق الانفجار العظيم النووي. أما الأدلة الأحدث، فقد شملت رصد تشكل وتطور المجرات، وتوزيع الكون المرصود، وأحيانًا يُطلق على تلك الأدلة "الأعمدة الأربعة" لنظرية الانفجار العظيم.تناولت النماذج الدقيقة الحديثة للانفجار العظيم العديد من الظواهر الفيزيائية الغريبة التي لم يتم ملاحظتها في التجارب المعملية الأرضية أو دمجها في النموذج القياسي لفيزياء الجسيمات. من بين تلك الظواهر، تخضع المادة المظلمة حاليًا لأكثر الأبحاث المعملية نشاطًا. ومن بين القضايا الأخرى قيد البحث مشكلة وجود المجرات القزمة في المادة المظلمة الباردة. وتُعد الطاقة المظلمة أيضًا محورًا لاهتمام كبير من العلماء، ولكن ليس من الواضح ما إذا كان الاستكشاف المباشر للطاقة المظلمة سوف يكون ممكنًا.

ويبقى التضخم الكوني ونشأة الباريونات من أكثر نماذج الانفجار العظيم التي تدعو للتفكير.
قانون هابل وتمدد الفضاء

Crystal Clear app kdict.png مقالات مفصلة: قانون هابل تمدد الكون

Crystal Clear app kdict.png طالع أيضًا: مقياس المسافة في الفلك عامل التحجيم

أظهرت عمليات رصد أبعاد المجرات والنجوم الزائفة أن الانزياح الأحمر للضوء المنبعث من تلك الأجسام له أطوال موجية أكبر. ويمكن ملاحظة ذلك بدراسة طيف تردد هذا الجسم ومطابقته بنموذج مطيافية خطوط الانبعاث أو خطوط الامتصاص المصاحبة لذرات العناصر الكيميائية التي تتفاعل مع هذا الضوء. هذه الانزياحات الحمراء متجانسة الخواص، وموزعة بالتساوي بين الأجسام المرصودة في كل الاتجاهات. وإذا تم تصنيف الانزياح الأحمر على أنه انزياح دوبلر، فبالإمكان حساب سرعة ابتعاد هذا الجسم. بعض المجرات يمكن تقدير بعدها من خلال سلم المسافات الكونية. وعند رسم سرعات ابتعادها إلى مسافاتها، ستنتج علاقة خطية تُعرف باسم قانون هابل:

v = H0D

حيث

v هي سرعة ابتعاد مجرة أو أي جسم بعيد.
D هي المسافة إلى الجسم
H0 هو ثابت هابل، الذي قدّره مسبار ويلكنسون بـ 70.4 +1.3
−1.4 كيلومتر/ثانية/فرسخ فلكي.

هناك تفسيران محتملان لقانون هابل. الأول أننا في مركز انفجار المجرات، وهو أمر لا يمكن تأكيده وفقًا لمبدأ كوبرنيكوس، والثاني أن الكون يتمدد في كل إتجاه. نظرية تمدد الكون استُنتجت من خلال نظرية النسبية العامة عن طريق ألكسندر فريدمان سنة 1922 م، وجورج لوميتر سنة 1927 م،

أي قبل أن يقوم هابل بأرصاده وتحليلاته سنة 1929 م، التي أصبحت حجر الزاوية في نظرية الانفجار العظيم، ونتج عنها وضع إحداثيات روبرتسون-ووكر.

تفترض تلك النظرية أن العلاقة v = HD ثابتة في جميع الأوقات، حيث D هي المسافة، v هي سرعة الابتعاد، وأن v وH وD تتغير نظرًا لتمدد الكون (وبالتالي تُكتب H0 للدلالة على ثابت هابل المعاصر). وبالنسبة للمسافات الأصغر في حيز الكون المرصود، يمكن اعتبار انزياح هابل الأحمر على أنه انزياح دوبلر المصاحب لسرعة الابتعاد v. ومع ذلك، فإن الانزياح الأحمر ليس انزياح دوبلر حقيقي، وإنما هو الناتج عن تمدد الكون في الوقت الذي انبعث فيه الضوء إلى الوقت الذي تم اكتشافه فيه.
وفي سنة 2000 م، أثبتت قياسات تأثيرات الخلفية الإشعاعية للكون على حركة النظم الفيزيائية الفلكية البعيدة مبدأ كوبرنيكونس بأنه بالمقاييس الفلكية، فإن الأرض ليست في وضع مركزي.

وقد كانت إشعاعات الانفجار العظيم أكثر دفئًا في الماضي في جميع أنحاء الكون. ولا يمكن تفسير التبريد المنتظم للخلفية الموجية للكون عبر مليارات السنين إلا في حالة أن يكون الكون يتمدد، واستبعاد احتمالية أننا بالقرب من المركز الأصلي للانفجار.
الخلفية الإشعاعية للكون

Crystal Clear app kdict.png مقالة مفصلة: الخلفية الإشعاعية للكون

صورة قياسات مسبار ويلكنسون عام 2012 على مدار 9 سنوات لإشعاع الخلفية الكونية الميكروويفية. تُظهر تجانس الخواص الإشعاعية بدقة تصل إلى جزء من 100,000 جزء.في سنة 1964 م، اكتشف آرنو بينزياس وروبرت ويلسون مصادفة الخلفية الإشعاعية للكون، التي هي إشارة أحادية في حزمة الموجات الصغرية.

قدم اكتشافهما تأكيدًا للتنبؤات بوجود خلفية إشعاعية للكون، وقد وُجد أن الإشعاع ثابت ومعظمه متسق مع طيف الجسم الأسود في كل الاتجاهات، وأن هذا الطيف انزاح انزياحًا أحمرًا من تمدد الكون، ويتوافق في الوقت الحاضر مع ما يقرب من 2.725 كلفن. مما أعطى دليل إضافي يعطي أفضلية لنموذج الانفجار العظيم، ومُنح بينزياس وويلسون جائزة نوبل سنة 1978 م.
طيف الخلفية الإشعاعية للكون مُقاسًا بجهاز FIRAS في مستكشف الخلفية الكونية، والذي يُعد أكثر طيف لجسم أسود مُقاسًا بدقة في الطبيعة.تكوّن السطح المبعثر الأخير المصاحب للخلفية الإشعاعية للكون بعد فترة وجيزة من حقبة إعادة الاندماج، التي أصبح فيها الهيدروجين مستقرًا. قبل ذلك، كان الكون يتألف من بحر من بلازما فوتونية-باريونية كثيفة وساخنة حيث كانت الفوتونات تتشتت بسرعة عن الجسيمات المشحونة الحرة. وتبلغ ذروتها عند حوالي 372±14 ألف سنة،

وأصبح متوسط المسار الحر للفوتون طويلاً بما فيه الكفاية ليصل إلينا اليوم، وأصبح الكون شفافًا.

وفي سنة 1989 م، أطلقت ناسا مستكشف الخلفية الكونية (COBE). كانت النتائج التي توصلت إليها متوافقة مع التنبؤات فيما يتعلق الخلفية الإشعاعية للكون، ووجدت أن درجات الحرارة المتبقية حوالي 2.726 كلفن (القياسات الأخيرة خفّضت الرقم قليلاً إلى 2.725 كلفن)، وقدمت أول دليل على وجود تقلبات في الخلفية الإشعاعية للكون، في مستوى حوالي جزء واحد من 105 جزء.
ومُنح جون ماثر وجورج سموت جائزة نوبل لقيادتهم لهذا العمل. خلال العقد التالي، فُحصت تقلبات الخلفية الإشعاعية للكون أكثر بواسطة عدد كبير من البالونات والتجارب الأرضية. وبين عامي 2000-2001 م، كانت أكثر التجارب ملحوظية هي تجربة بوميرانج التي اكتشفت أن شكل الكون تقريبًا مُسطّح عن طريق قياس الحجم الزاوي (الحجم في السماء) للمناطق غير المتجانسة في الخلفية الإشعاعية للكون. في بداية سنة 2003 م، نُشرت النتائج الأولية لمسبار ويلكينسون لقياس اختلاف الموجات الراديوية (WMAP)، التي كانت في وقتها القيم الأكثر دقة لبعض المتغيرات الكونية. فنّدت النتائج بعض نماذج التضخم الكوني، ولكنها توافقت مع نظرية التضخم بشكل عام.

وفي مايو 2009 م، أُطلق مرصد بلانك الفضائي، ومازالت العديد من تجارب الأرضية والبالونية لاختبار الخلفية الإشعاعية للكون جارية.
وفرة العناصر الأولية

Crystal Clear app kdict.png مقالة مفصلة: تخليق الانفجار العظيم النووي

باستخدام نموذج الانفجار العظيم، من الممكن حساب تركيزات هيليوم-4 وهيليوم-3 والديوتيريوم وليثيوم-7 في الكون نسبةً إلى كمية الهيدروجين العادي.
وتعتمد الوفرة النسبية لتلك العناصر على متغير وحيد، وهو نسبة الفوتونات إلى الباريونات. هذه القيمة يمكن حسابها وحدها من تفاصيل بنية تقلبات الخلفية الإشعاعية للكون. والنسب المتنبأة (بالوزن لا بالعدد) حوالي 0.25 لنسبة 4He/H وحوالي 10−3 لنسبة 2H/H وحوالي 10−4 لنسبة 3He/H وحوالي 10−9 لنسبة 7Li/H.تتفق قيم وفرة تلك العناصر كلها تقريبًا مع النسب المتنبأة من قيمة وحيدة لنسبة باريون/فوتون. تتفق النسبة المُتنبّأة للديوتيريوم بامتياز مع النسبة الحسابية، وتقترب نسبة 4He مع بعض التجاوز، وتقترب من النصف في حالة 7Li. وفي الحالتين الأخيرتين ينقصهما بعض الدقة، ومع ذلك، فإن التوافق العام مع نسب وفرة العناصر الأولية التي تنبأ بها تخليق الانفجار العظيم النووي هو دليل قوي على الانفجار العظيم، حيث أن النظرية هي التفسير الوحيد المعروف عن الوفرة النسبية لتلك العناصر الخفيفة، وأنه يكاد يكون من المستحيل "ضبط" الانفجار العظيم لإنتاج أكثر أو أقل من 20-30٪ هيليوم.

وفي الواقع لا يوجد سبب واضح يُلزم الكون بأن يكون فيه هيليوم أكثر من الديوتريوم أو ديوتريوم أكثر من 3He/H وبنسب ثابتة أيضًا.
تطور المجرات وتوزيعها

Crystal Clear app kdict.png مقالات مفصلة: تشكل وتطور المجرات تشكل البنية

إن الأرصاد التفصيلية لتشكل وتوزيع المجرات والنجوم الزائفة، يُظهر توافقها مع نظرية الانفجار العظيم. فكل من النظرية والأرصاد افترضتا أن النجوم الزائفة والمجرات الأولى تشكلت بعد مليار سنة من الانفجار العظيم، ومنذ ذلك الحين تكونت تجمعات أكبر مثل عناقيد المجرات والعناقيد المجرية الضخمة. ثم نمت وتطورت عدد من النجوم، بحيث بدت المجرات البعيدة مختلفة جدًا عن المجرات القريبة. وعلاوة على ذلك، بدا أن المجرات التي تشكلت مؤخرًا نسبيًا تختلف بشكل ملحوظ عن المجرات التي تشكلت على مسافات مماثلة، ولكن بعد وقت قصير من الانفجار العظيم. تعد تلك الأرصاد حججًا قوية ضد نموذج الحالة الثابتة. كما تتفق أرصاد ولادة النجوم وتوزيع المجرات والنجوم الزائفة بشكل جيد مع سيناريو الانفجار العظيم عن تشكل بنية الكون، وتساعد على إكمال تفاصيل النظرية.
السحب الغازية الأولى
في سنة 2011 م، وجد الفلكيون ما يعتقدون أنهما سحابتين بدائيتين من الغاز الأوليّ من خلال تحليل خطوط الامتصاص في أطياف النجوم الزائفة البعيدة. قبل هذا الاكتشاف، لوحظ أن جميع الأجسام الفلكية الأخرى تحتوي على عناصر ثقيلة التي تتكون في النجوم، بينما هاتين السحابتين من الغاز لا تحتويان على عناصر أثقل من الهيدروجين والديوتريوم.

ونظرًا لأنها لا تحتوي على عناصر ثقيلة، يُعتقد أنهما تكونتا في الدقائق الأولى للانفجار العظيم خلال تخليق الانفجار العظيم النووي، حيث تتوافق مكوناتهما مع المكونات المتوقع أن ينتجها تخليق الانفجار العظيم النووي. كان ذلك دليلاً مباشرًا على أنه كانت هناك حقبة في تاريخ الكون قبل تكوّن النجوم الأولى، حينها كانت معظم المواد الأولية موجودة في صورة سحب من الهيدروجين المستقر.
أدلة أخرى
إن عمر الكون وفق تقديرات تمدد هابل والخلفية الإشعاعية للكون يتوافق إلى حد كبير مع التقديرات الأخرى التي تستخدم أعمار أقدم النجوم، فكلاهما قيس من خلال تطبيق نظرية التطور النجمي على التجمعات الكروية والتأريخ الإشعاعي للنجوم المعدنية. كما أن التكهن بأن درجة حرارة الخلفية الإشعاعية للكون كانت أعلى في الماضي، تم تدعيمه تجاربيًا من خلال رصد خطوط الامتصاص المنخفضة الحرارة للغاية في سحب الغاز ذات الانزياح الأحمر الكبير. ومن المفترض ضمنيًا من هذا التكهن أن مدى تأثير سونيايف-زيلدوفيتش في الكون المرصود لا يعتمد مباشرة على الانزياح الأحمر، وهو ما أثبتت الأرصاد صحته إلى حد كبير، ولكن هذا التأثير يعتمد على خصائص التجمعات المجرية التي تتغير مع الزمن الكوني، مما يجعل من الصعب قياسه بدقة.وفي 17 مارس 2014 م، أعلن فلكيو مركز هارفارد-سميثونيان للفيزياء الفلكية اكتشاف موجات ثقالية أولية، التي إن تم تأكيدها قد تعطي دليلاً قويًا على التضخم الكوني والانفجار العظيم. ومع ذلك، في 19 يونيو 2014، انخفضت الثقة في تأكيد تلك النتائج، وفي 19 سبتمبر 2014، انخفض تأكيد النتائج أكثر.
قضايا متعلقة في الفيزياء
تباين الباريونات

Crystal Clear app kdict.png مقالة مفصلة: تباين الباريون

إلى الآن، من غير المعلوم لماذا يحتوي الكون على مواد أكثر من مضادات تلك المواد.
ومن المفترض عامة أنه عندما كان الكون ناشئًا وشديد الحرارة، كان في حالة توازن استاتيكي وكان يحتوي على عدد متكافيء من الباريونات ومضادات الباريونات. ورغم ذلك، فإن نتائج الأرصاد تقول بأن الكون بما فيه أبعد أجزائه يتكون بأكمله تقريبًا من المادة (بمعنى لا وجود لمضاداتها). ويفترض أن التباين نشأ في عملية نشأة الباريونات. فلكي تحدث عملية نشأة الباريونات، يجب أن تتحقق الشروط التي وضعها ساخاروف لنشأة الباريونات. وهو ما يتطلب أن يبقى عدد الباريونات غير ثابت، حيث حدث انتهاك لتناظر الشحنة السوية، وابتعد الكون عن التوازن الترموديناميكي.

كل تلك الظروف حدثت في نظرية النموذج العياري، لكن تأثيرها لم يكن كافيًا لتفسير تباين الباريونات الحالي.
الطاقة المظلمة

Crystal Clear app kdict.png مقالة مفصلة: طاقة مظلمة

أوضحت قياسات العلاقة بين الانزياح الأحمر–القدر الظاهري لمستعر أعظم من النوع 1أ أن تمدد الكون بدأ في التسارع منذ كان الكون في نصف عمره الحالي. ولتفسير هذا التسارع، تقول نظرية النسبية العامة بأنه يتطلب أن تكون معظم طاقة الكون سلبية التي تُعرف باسم "الطاقة المظلمة". تحل الطاقة المظلمة العديد من المشاكل. فقياسات الخلفية الإشعاعية للكون توضح أن الكون تقريبًا مُسطّح، وبالتالي ووفقًا للنسبية العامة، لابد وأن يكون للكون قيمة كتلة/طاقة تمامًا وفق حسابات معادلات فريدمان. ولكن بحساب كثافة الكتلة من خلال جاذبيتها، ووجد أنها تعادل فقط حوالي 30% من كثافتها الحرجة.

ونظرًا لافتراض النظرية أن الطاقة المظلمة لا تتجمع بالطريقة الاعتيادية، فيكون ذلك هو التفسير الأمثل للفقد في كثافة الطاقة. وتساعد الطاقة المظلمة في تفسير مقياسين حجميين للمنحنى الكلي للكون، الأول باستخدام تردد عدسات الجاذبية، والآخر يستخدم النموذج المميز للكون المرصود كمسطرة كونية.

يعتقد أن الضغط السلبي هو أحد خواص طاقة الفراغ، لكن طبيعة ووجود الطاقة المظلمة لا يزال أحد أكبر ألغاز الانفجار العظيم. وفي سنة 2008 م، توصّل فريق مسبار ويلكنسون إلى أن الكون يتكون من 73% طاقة مظلمة و 23% مادة مظلمة و4.6% مادة عادية وأقل من 1% نيوترينوات.

ووفقًا للنظرية، فإن كثافة الطاقة في المادة تقل مع تمدد الكون، ولكن تبقى كثافة الطاقة المظلمة ثابتة مع تمدد الكون. ولذا، كانت المادة في الماضي تمثل جزءً أكبر من الطاقة الكلية للكون أكثر مما هي عليه اليوم، وستقل نسبة مساهمتها في المستقبل البعيد عندما تصبح الطاقة المظلمة أكثر هيمنة.
المادة المظلمة

Crystal Clear app kdict.png مقالة مفصلة: مادة مظلمة

رسم بياني يوضح نسب المكونات المختلفة للكون حيث تُمثّل المادة المظلمة والطاقة المظلمة حوالي 95% من مكونات الكون.

خلال سبعينيات وثمانينيات القرن العشرين، أظهرت عدة أعمال رصد عدم وجود مادة مرئية كافية في الكون لتُشكّل قوة جذب واضحة داخل وبين المجرات. أدى ذلك إلى التفكير بأن نحو 90٪ من المادة في الكون هي مادة مظلمة لا ينبعث منها ضوء ولا تفاعل مع المادة الباريونية العادية. ورغم أن فرضية وجود المادة المظلمة مثيرة للجدل، إلا أنه يُستدل عليها من خلال عمليات الرصد المختلفة: مثل عدم التجانس في الخلفية الإشعاعية للكون وانخفاض سرعات عناقيد المجرات وتوزيع بنية الكون ودراسات عدسة الجاذبية وقياسات الأشعة السينية لعناقيد المجرات.
كما أن هناك دلائل أخرى غير مباشرة على وجود المادة المظلمة مثل تأثيرها الجذبوي على المواد الأخرى، ومازال العديد من المشاريع البحثية الجارية في فيزياء الجسيمات للتعرف على طبيعة المادة المظلمة.
عمر التجمعات الكروية
في منتصف التسعينيات، أظهرت أرصاد التجمعات الكروية عدم توافقها مع نظرية الانفجار العظيم. وتشير المحاكاة الحاسوبية لعمليات رصد نجوم التجمعات الكروية أن عمرها حوالي 15 مليار سنة، وهو ما يتعارض مع تقدير عمر الكون الذي هو حوالي 13.8 مليار سنة. تم حل هذه المشكلة جزئيًا في أواخر التسعينيات، عندما أجريت محاكاة حاسوبية جديدة شملت تأثيرات فقد الكتلة نتيجة الرياح النجمية، مما جعل عمر تلك التجمعات الكروية أصغر من التقدير الأول.

وبقيت هناك عدة أسئلة حول دقة تقدير أعمار تلك التجمعات الكروية.
سبب الحدوث

Crystal Clear app kdict.png مقالة مفصلة: مسألة لماذا هناك أي شيء على الإطلاق

كتب غوتفريد فيلهيلم لايبنتز: «"لماذا هناك شيء بدلاً من لا شيء؟ السبب الكافي [...] يعثر عليه في مادة [...] هي ذاتها كائن ضروري يحمل سبباً لوجوده ضمن نفسه".»
لقد جادل فيلسوف الفيزياء دين ريكلز أن الأرقام والرياضيات (أو القوانين المبطنة لهم) قد تكون ضرورياً موجودة. يمكن للفيزياء أن تستنتج أن الزمن لم يكن موجوداً قبل "انفجار عظيم"، ولكن "بدأ" مع الانفجار العظيم وبالتالي يمكن أن لا يكون هناك "بداية"، "قبل" أو تبعياً "سبب" وبدلاً عن ذلك كان الزمن موجوداً دائماً. البعض يجادل أن اللاشيء لا يمكن أن يوجد أو أن عدم الوجود ربما لم يكن خياراً أبداً.

الاهتزازات الكمية، أو قوانين فيزيائية أخرى التي من الممكن أن تكون قد تواجدت في بداية الانفجار العظيم كان بإمكانها بعد ذلك أن تنشئ الشروط اللازمة من أجل أن تتكون المادة.
مشاكل
لازالت هناك ثلاث مشاكل رئيسية قائمة في مواجهة نظرية الانفجار العظيم: مشكلة الأفق ومشكلة التسطح ومشكلة أحادية القطب المغناطيسي. لعل التفسير الأمثل لسبب حدوث تلك المشاكل هو التضخم الكوني.
مشكلة الأفق
تتحدد هندسية شكل الكون من خلال قيمة ناتج معامل أوميجا الكوني، وما إذا كانت قيمته أقل أو يساوي أو أكبر من 1. والرسم يظهر من أعلى إلى أسفل شكل الكون في حالات قيمة المعامل الإيجابية والسلبية وعندما قيمته تساوي 1 على الترتيب.

تكمُن مشكلة الأفق الكوني في حقيقة أن المعلومات أو الخواص لا يمكنها أن تنتقل أسرع من الضوء، وبالتالي فإنه في كوننا محدود العمر، لابد من وجود حد للمسافة بين أي منطقتين في الفضاء متحدتين في الخصائص.

أي أن هناك مناطق مختلفة في الكون لن يكون لها نفس الخواص نظرًا للمسافات الكبيرة بينها وعدم توافر الوقت الكاف لها لكي تتوحد في الخواص، إلا أن هذا يتناقض مع حقيقة توحد مناطق الكون في نفس درجة الحرارة والخصائص الفيزيائية الأخرى. وقد قدّمت فرضية التضخم الكوني حلاً لهذا التناقض الواضح، فقبل حدوث التضخم الكوني كان الكون وحدة أصغر في الحجم متجانسة الخواص، إلا أنه بحدوث هذا التضخم تمدد الكون بصورة هائلة في فترة قصيرة جدًا من الزمن، مما جعل هناك مناطق متباعدة متوحدة الخواص.
مشكلة التسطُّح

Crystal Clear app kdict.png مقالة مفصلة: مسألة التسطح

ومن المشاكل الأخرى التي واجهت نظرية الانفجار العظيم مشكلة التسطح. فشكل الكون قد يكون ذو انحناء موجب أو سالب أو بلا انحناء وفقًا لقيمة كثافة طاقته الكلية. يكون الانحناء سلبيًا إذا كانت كثافة الطاقة أقل من الكثافة الحرجة وفقًا لمعادلات فريدمان، وإيجابيًا إذا كانت القيمة أكثر من الكثافة الحرجة، ويكون مُسطّحًا إذا كانت الكثافة تساوي قيمة الكثافة الحرجة. وتكمُن المشكلة في أن أي حيود مع مرور الوقت عن قيمة كثافة الطاقة الحرجة سيغير من حالة التسطح التي عليها الكون اليوم. كما أنه لا شك بأن كثافة طاقة الكون بعد دقائق من الانفجار العظيم لم يكن حيودها عن القيمة الحرجة لكثافة الطاقة بأكثر من جزء من 1014 من القيمة الحرجة، وإلا لما كان الكون سيكون على حالة تسطّحه التي هو عليها اليوم.
وقد قدمت فرضية التضخم الكوني أيضًا حلاً لتلك الإشكالية، حيث كان للتضخم الهائل في زمن قياسي دوره في الحفاظ على تجانس كثافة الطاقة في الكون رغم تمدده المتسارع، مما حافظ على تجانس حالة تسطحه وعدم اضطرابها من منطقة لأخرى في الكون.
مشكلة أحادية القطبية
أثيرت مشكلة أحادية القطبية الكهرومغناطيسية في أواخر سبعينيات القرن العشرين، حيث تنبأت نظريات التوحيد الكبرى بوجود عيوب طوبولوجية في الفضاء، قد ينتج عنها تواجد مناطق أحادية القطبية، وأن تلك المناطق المعيبة نشأت قديمًا في الكون عندما كان الكون ساخنًا، مما أدى إلى زيادة في كثافة تلك المناطق. إلا أن عمليات الرصد لم ترصد مناطق أحادية القطبية في الكون المرصود. هذه المشكلة أيضًا وُجد لها حلاً افتراضيًا من خلال فرضية التضخم الكوني، حيث افتُرض أن التضخم الكوني فائق السرعة أزاح كل تلك المناطق المعيبة خارج نطاق الكون المرصود.
مصير الكون في نظرية الانفجار العظيم

Crystal Clear app kdict.png مقالة مفصلة: مصير الكون

قبل الأرصاد التي تمت على الطاقة المظلمة، كان لدى علماء الكون سيناريوين حول مستقبل الكون. الأول إذا زادت كثافة كتلة الكون عن الكثافة الحرجة وفق معادلات فريدمان، فإن الكون سيصل إلى حجم أقصى ثم يبدأ في الانهيار، حيث سيصبح أكثر كثافة وسخونة مرة أخرى، وينتهي إلى حالة مماثلة لتلك التي بدأ منها، فيما يُعرف بالانسحاق العظيم.

السيناريو الآخر إذا كانت الكثافة تساوي أو أقل من الكثافة الحرجة، فإن تمدد الكون سيتباطأ، ولكن لن يتوقف أبدًا. وسيتوقف تشكُّل النجوم مع استهلاك الغاز بين النجوم في كل مجرة، وستحترق النجوم مُخلّفة الأقزام البيضاء والنجوم النيوترونية والثقوب السوداء. وتدريجيًا، ستتصادم تلك الأجسام وتتجمع وستنتج عن ذلك ثقوب سوداء أكبر. وسيقترب متوسط درجة حرارة الكون من الصفر المطلق، وسيحدث التجمد الكبير. وعلاوة على ذلك، فنظرًا لعدم استقرار البروتونات، ستختفي المادة الباريونية تاركة فقط إشعاع وثقوب سوداء. في نهاية المطاف، فإن الثقوب السوداء ستتبخر عن طريق انبعاث إشعاع هوكينغ. وستزداد إنتروبيا الكون إلى النقطة التي لن تسمح بوجود أي شكل مُنظّم للطاقة، ويُعرف هذا السيناريو باسم الموت الحراري للكون. كما تستنتج الأرصاد الحديثة لتسارع تمدد الكون أن الكثير من مناطق الكون المرصود حاليًا سوف تخرج من أفقنا.

أما نموذج لامبدا-سي دي إم فيشمل وجود طاقة مظلمة في شكل ثابت كوني، حيث تقترح تلك النظرية أن الأنظمة المترابطة بالجاذبية مثل المجرات، ستبقى معًا، وأنها أيضًا ستكون معرضة للموت الحراري مع تمدد الكون وتبرده. ومن التفسيرات الأخرى للطاقة المظلمة، نظريات الطاقة الوهمية، التي تفترض أن التجمعات المجرية والنجوم والكواكب والذرات والأنوية والمادة نفسها ستتمزق مع تزايد تمدد الكون في ما يسمى بالتمزق العظيم.
اعتقادات خاطئة

ما يلي لائحة جزئية لاعتقادات خاطئة شائعة عن نظرية الانفجار العظيم.

الانفجار العظيم هو أصل الكون: أحد الاعتقادات الخاطئة الشائعة عن نموذج الانفجار العظيم هو اعتقاد أنه كان أصل الكون. لكن نموذج الانفجار العظيم لا يعلق على كيفية مجيء الكون للحدوث. النسخة الحالية لنموذج الانفجار العظيم تفترض وجود الطاقة، الزمن، والمكان، ولا تعلق على أصل أو مسبب الحالة الأولية العالية الحرارة والكثيفة للكون.
الانفجار العظيم كان "صغيراً": إنه من المخادع أن تتصور الانفجار العظيم عن طريق مقارنة حجمه بالأشياء اليومية. عندما يتم وصف حجم الكون عند الانفجار العظيم، إنه يتم الإشارة إلى حجم الكون المرصود لا الكون بأكمله.قانون هابل يناقض نظرية النسبية الخاصة: يتوقع قانون هابل أن المجرات الخارجة عن مسافة هابل تنكفئ بسرعة أعلى من سرعة الضوء. ولكن النسبية الخاصة لا تطبق خارج نطاق الحركة في المكان. قانون هابل يصف السرعة الناتجة عن تمدد المكان لا التمدد في المكان.انزياح دوبلر الأحمر ضد الانزياح الأحمر الكوني: باحثوا الفلك يقومون بالعادة بالإشارة إلى الانزياح الأحمر الكوني كانزياح دوبلر عادي، والذي هو اعتقاد خاطئ. رغم أنهما متماثلين، الانزياح الأحمر الكوني ليس مطابقاً لانزياح دوبلر الأحمر. انزياح دوبلر الأحمر مبني على النسبية الخاصة، والتي لا تأخذ بعين الاعتبار تمدد المكان. على العكس، الانزياح الأحمر الكوني مبني على النسبية العامة، والتي فيها يتم أخذ تمدد المكان بعين الاعتبار. رغم أنه بإمكانهم أن يبدوا متطابقين للمجرات القريبة، من الممكن أن يسبب هذا حيرة إذا كان سلوك المجرات البعيدة مفهوماً من خلال انزياح دوبلر الأحمر.
تأملات فيزيائية في نظرية الانفجار العظيم
نموذج توضيحي لتمدد الفضاء، حيث يُمثل كل فترة زمنية مقطع دائري في الرسم. على اليسار تبدأ حقبة التضخم، وفي المنتصف يتسارع تمدد الكون.

رغم تكامل نظرية الانفجار العظيم إلى حد بعيد، إلا أنها تخضع للتنقيح. تُظهر المعادلات التقليدية للنسبية العامة وجود تفرد عند بداية الزمن الكوني، وهو استنتاج مبني على عدة افتراضات. مما يجعل تلك المعادلات غير قابلة للتطبيق في الأزمنة التي سبقت وصول الكون إلى حرارة بلانك. أمكن تصويب ذلك باستخدام الجاذبية الكمية لتجنُّب حالة التفرد المُفترضة تلك.

ليس معلومًا ما الذي قد يكون السبب وراء وجود حالة التفرد، أو كيف ولماذا نشأت، إلا إنه كانت هناك عدد من التكهنات حول تلك المسألة. فهناك بعض المقترحات، كل منها ينطوي على فرضيات غير مجربة، هي:

نماذج مثل حالة هارتل-هوكينغ التي فيها الزمكان محدود، وأن الانفجار العظيم يمثل حدّ الزمن، ودون الحاجة إلى التفرد.

نموذج شبكة الانفجار العظيم الذي يفترض أن الكون في لحظة الانفجار العظيم كان يتكون من شبكة لا نهائية من الفرميونات، وكان في أعلى درجات التماثل، وبالتالي له أقل قيمة للعشوائية.نماذج الكون الغشائي التي تفترض أن التضخم نتج عن حركة الأغشية في نظرية الأوتار مثل نموذج التحول الناري «ekpyrotic model» الذي يفترض أن الانفجار العظيم نتج عن التصادم بين الأغشية، والنموذج الدوري وهو بديل لنموذج التحول الناري الذي يفترض حدوث اصطدامات بصفة دورية بعد مرحلة انسحاق عظيم وتنقُّل الكون من عملية إلى أخرى.التضخم الأبدي الذي يفترض أن التضخم الكوني ينتهي في مواضع ما، وتتكون عند تلك المواضع كون وهمي يبدأ من عنده انفجاره العظيم الخاص به. 
 
 وفي الإسلام، المسلمين انقسموا قسمين قسم منهم يرى بأن الانفجار العظيم ورد ذكره في الآية رقم 30 من سورة الأنبياء في القرآن في قوله تعالى: Ra bracket.png [[ أَوَلَمْ يَرَ الَّذِينَ كَفَرُوا أَنَّ السَّمَاوَاتِ وَالْأَرْضَ كَانَتَا رَتْقًا فَفَتَقْنَاهُمَا وَجَعَلْنَا مِنَ الْمَاءِ كُلَّ شَيْءٍ حَيٍّ أَفَلَا يُؤْمِنُونَ]]   Aya-30.png La bracket.pngاستنادا لتفسير ابن كثير ويروا ان تمدد الكون ذُكر في الآية 47 من سورة الذاريات
 
في السورة: Ra bracket.png [[وَالسَّمَاءَ بَنَيْنَاهَا بِأَيْدٍ وَإِنَّا لَمُوسِعُونَ]]
  Aya-47.png La bracket.png 
 
 حيث تعني الآية إن السموات والأرض كانت كتلة واحدة كالرتق ففتقها الله أي فصلها أو فجرها، ثم تعني الآية التالية إنا لموسعون بمعنى وظلت السموات والأرض بمن فيها في توسع كوني بأمر الله واما القسم الثاني يرى ان ليس بالضرورة ان تم ذكر الانفجار العظيم في القرآن ويتفقون ان القران أو الإسلام لا يعارض النظرية ولا يؤيدها وان الموضوع متروك للعلم حيث يثبت النظرية أو ينفيها وفي الغالب يتفق هذه القسم علي ان الاية 47 من سورة سورة الذاريات تشير الي التمدد الكوني. 
 
هوامش
1 لا يوجد إجماع حول كم من الوقت استمرت مرحلة الانفجار العظيم. فالبعض يرى أن الانفجار العظيم يشير إلى حالة التفرد الأولي فقط، والبعض الآخر يراه يشمل كل تاريخ الكون. ويعتقد أن الدقائق القليلة الأولى للانفجار العظيم شهدت تخلُّق الهليوم.

(طالع تخليق الانفجار العظيم النووي)

انظر أيضاً

عمر الكون
تسلسل زمني للانفجار العظيم
ما وراء برنامج أينشتاين
بلانك (مرصد فضائي)
إشعاع الخلفية الكونية الميكروي
مصور الأشعة الخلفية الكونية
تاريخ الكون العظيم

====

بوابة علم الكون



!شارك صورا حول "البيت والموطن" مع كل العالم وفز بجوائز رائعة

بوابة:علم الكون
من ويكيبيديا، الموسوعة الحرة اذهب إلى التنقل اذهب إلى البحث

بوابة علم الكون
عدل
مقدمة

صورة للخلفية الإشعاعية للكون. ألتقطت بواسطة مسبار ويلكينسون عام 2012.
علم الكون هو دراسة أصل وتطور ومصير الكون النهائي. علم الكون الفيزيائي هو دراسة بحثية وعلمية لأصل وتطور وديناميكة ومصير الكون، بالإضافة للقوانين العلمية التي تحكم هذه الحقائق. يعود أصل الكلمة (بالإنجليزية: Cosmology)‏ من (الإغريقية: κόσμος) وتعني "عالم" و -λογία والتي تعني "دراسة".
المزيد
عدل
مقالة مختارة

في علم الفلك، تمدد الكون هو تمدد أبعاد الكون ويظهر في ابتعاد أي نقطتين في الكون عن بعضهما البعض من دون أن تكون لهما حركة. طبقا لنظرية الانفجار العظيم نشأ الكون من نقطة واحدة بتواجد كمية هائلة عظيمة من الطاقة شديدة السخونة وتمددت خلال العدة بملايين من السنين الأولى بعد تضخم كوني سريع بعد نشأته مباشرة، ثم بدأ معدل تمدده تقل حتى وصلت إلى المعدل الحالي. يتعلق تفسير ما نرصده من ظاهرة تمدد الكون بمجهودات العلماء حاليا، وهو لا يزال في مجال البحث. وترتبط محاولات تفسير تمدد الكون حاليا بفكرة تفترض ما يسمى طاقة مظلمة. تشير القياسات الحديثة أن معدل تمدد الكون في تزايد ويعزي العلماء هذا التزايد إلى المادة المظلمة التي تظهر في النموذج النظري على صورة الثابت الكوني. أصبحنا في استطاعتنا حديثا قياس تسارع تمدد الكون، وتعتقد النظرية أن تمدد الكون في الماضي كان " تباطئيا ، كابحا " تحت تأثير قوة الجاذبية بين المادة التي نشأت في الكون. حاليا يفترض العلماء نموذج لامبدا-سي دي إم لتفسير ما يجري في الكون، ويعزز هذا النموذج أن تمدد الكون تحت تأثير الطاقة المظلمة سوف يتزايد في المستقبل.
تابع القراءة
أرشيف
عدل
هل تعلم
هل تعلم...
... أن الفضاء مرن وبأنه ما يزال يتوسع منذ الانفجار العظيم؟
... أن معظم الذرات في أجسامنا نشأت في النجوم من خلال الاندماج النووي؟
... أن الأرض ليست مسطحة، ولكن الكون مسطح؟ وفقاً لنظرية أينشتاين النسبية العامة، هناك ثلاثة أشكال ممكنة للكون أن يأخذها: مفتوح، مغلق ومسطح. ومجددًا، كشفت القياسات بواسطة مسبار ويلكينسون لقياس اختلاف الموجات الراديوية لإشعاع الخلفية الكونية الميكروي تأكيدًا كبيرًا بأن الكون مسطح.
... أن متوسط كثافة المادة المرئية في الكون هو حوالي 10-30 غ/سم3؟
... أن درجة حرارة إشعاع الخلفية الكونية الميكروي هو 2.7 كلفن؟
... أن الأرض ليست مركز الكون ولا المجرة، لأن الكون ليس له مركز؟
عدل
شخصية مختارة

جورج لومتر (بالإنجليزية: Georges Lemaître) هو عالم فلك وكاهن كاثوليكي اقترح ما سمي فيما بعد نظرية الانفجار العظيم لنشأة الكون، وقد سماها من قبل "افتراض الذرة الأولية". واسمه بالكامل Monsignor Georges Henri Joseph Édouard Lemaître د في 17 يوليو 1894 وتوفي في 20 يونيو 1966 وهو بلجيكي الأصل، كان أستاذا للفيزياء وعلم الفلك بالجامعة الكاثوليكية بمدينة لوفان.
تابع القراءة
أرشيف
عدل
مشاريع ويكي متعلقة

مشروع ويكي فلك


مشروع ويكي فيزياء مشروع ويكي علوم

مشروع ويكي فلسفة
عدل
مواضيع متعلقة بعلم الكون
زمن ومكان مطلق
كون متوسع
عمر الكون
مبدأ إنساني
نشأة الباريونات
الانفجار العظيم
تسلسل زمني للانفجار العظيم
تخليق الانفجار العظيم النووي
تاريخ نظرية الانفجار العظيم
نظرية الارتداد العظيم
كبح أعظم
الانسحاق الشديد
تمزق أعظم
انزياح نحو الأزرق
علم الكون الغشائي
مسافة مسايرة
مساهمون لعلم الكون
إشعاع خلفي كوني
تقويم كوني
سلم المسافات الكونية
إشعاع الخلفية الكونية الميكروي
ثابت كوني
طاقة مظلمة
مادة مظلمة
اكتشاف الخلفية الإشعاعية للكون
إحداثيات روبرتسون-ووكر
حقل هابل السحيق
تضخم كوني
حقبة التضخم
نموذج لامبدا-سي دي إم
معدنية
تمدد الكون
متعدد الأكوان
كون منظور
حقبة بلانك
مقاييس بلانك
قانون هابل
حقبة الكوارك
انزياح أحمر
شكل الكون
عدل
بوابات شقيقة

علم الفلك

المجموعة الشمسية

المشتري

زحل

القمر

نجوم

رحلات فضائية

الفيزياء

أورانوس

المريخ

الفضاء

علم الكواكب خارج المجموعة الشمسية
عدل
مشاريع شقيقة
المزيد عن علم الكون في المشاريع الشقيقة:
ويكي كتب كومنز ويكي أخبار ويكي اقتباس ويكي مصدر ويكي جامعة ويكي رحلات ويكاموس ويكي بيانات
كتب وسائط متعددة أخبار اقتباسات نصوص مصادر تعليمية وجهات سفر تعاريف ومعاني قواعد بيانات









تحديث محتويات هذه الصفحة
تصنيف:
بوابة علم الكون
=============

عمر الكون و الانفجار العظيم الفضاء الكوني-عمر كوكب الأرض -علم الكون Cosmology)

 

 عمر الكون
من ويكيبيديا، الموسوعة الحرة
جزء من سلسلة عن علم الكون الفيزيائي
صورة كاملة للسماء التقطها مسبار ويلكنسون على مدى تسع سنوات

        الانفجار العظيم   الفضاء الكوني
    عمر الكون
    التسلسل الزمني للانفجار العظيم

    بدايات الكون

    التمددالمستقبل

    التركيبالبنية

    علم الفلك الرصدي

    العلماء

    علم الكون الفيزيائي

البداية
عمر الكون، في علم الكون الفيزيائي، هو العمر الاحتمالي أو المدة الزمنية المستغرقة من طرف الكون منذ نشأته أي منذ الانفجار العظيم Big Bang لحد الآن (بوجود احتمالات عدة في التغير الزماني). يُقدّر العمر الكوني حاليًا بنحو 13.799±0.021 مليار سنة طبقًا لنموذج «لامبدا-سي دي إم Lambda-CDM concordance model». بتقلص في الاحتماليّات لنحو 21 مليون سنة فقط، طبقًا لعدد من المشروعات التي تعطي أرقامًا قريبة من هذا الرقم. ومن هذه المشروعات كان: إشعاع الخلفية الكونية الميكروي cosmic microwave background radiation، مسبار ويلكينسون لتباين الأشعة الكونية Wilkinson Microwave Anisotropy Probe، مركبة بلانك الفضائية Planck satellite.
يقيس إشعاع الخلفيّة الكونيّة مدة التبريد الكونيّ منذ الانفجار العظيم، بينما يمكن استخدام معدل التمدد الكونيّ لحساب عمر الكون التقديريّ بالاستقراء العكسي في الزمن.
محتويات

    1 الشرح
    2 حدود الرصد
    3 المعادلات الكونية
    4 مسبار ويلكينسون لتباين الأشعة الكونية
    5 بلانك
    6 افتراضات بمسلمات متينة
    7 التاريخ
    8 انظر أيضا
    9 مراجع

الشرح
يصف نوذج «لامبدا-سي دي إم» تطور الكون من حالته البدائيّة الساخنة المكثّفة الموحّدة، حتى حالته الحاليّة، على مدار 13.8 مليار سنة من العمر الكونيّ. يمكن فهم النموذج من الناحيّة النظريّة ويمكن تدعيمه بقوة خلال الاستكشافات الفلكيّة عاليّة الدقة مثل «مسبار ويلكينسون لتباين الأشعة الكونية». إلا أن النظريات التي تتناول أًصل حالة الكون البدائيّة تلك لازالت في مرحلة التأملات غير المدعومة بالأدلة العلميّة. فإذا قام المرء بالاستقراء العكسي لنموذج «لامبدا-سي دي إم» من الحالة الأوليّة المفهومة جيدًا، سيرجع إلى نقطة تعرف بـ«التفرد الثقاليّ/الجذبويّ Gravitational Singularity» المعروفة أيضًا بـ«متفردة الانفجار العظيم»، وهذه النقطة -التفرد الثقاليّ- ليس لها دلالة فيزيائيّة مفهومة بالمعنى العلميّ، لكن من الملائم أن نستشهد بأوقات بعد "الانفجار العظيم" لا تتوافق مع العمر الممكن قياسه فيزيائيًا. فعلى سبيل المثال، مدة 10−6 ثانية بعد الانفجار العظيم هي فترة محددة في تطور الكون، لكن إذا أشار المرء لنفس الفترة بقوله «13.8 مليار سنة إلا 10−6 ثانية» ستضيع دقة المعنى لأن ضئالة هذا الرقم لا تقارن بلايقين عمر الكون المعروف (13.8 مليار سنة).

بالرغم من أن للكون تاريخًا أطول نظريًا، إلا أن الاتحاد الفلكي الدولي يستخدم حاليًا مصطلح «عمر الكون» للتعبير عن المدة المحسوبة لتمدد الكون من نموذج «لامبدا-سي دي إم»، أو العمر المُلاحظ منذ الانفجار العظيم في الكون الملاحظ الحاليّ.
حدود الرصد

بما أن عمر الكون يجب أن يتوافق على الأٌقل مع عمر أقدم الأشياء به، هناك عدد من الملاحظات التي يمكنها أن تضع حدًا أدنى لعمر الكون؛ مثل درجة حرارة أكثر «الأقزام البيضاء white dwarfs» برودة، والتي تزداد برودتها بزيادة عمرها، وأكثر نقاط الانطفاء خفوتًا للنسق الأساسي main sequence لتجمعات النجوم (التكتلات السفلى من النجوم تمضي وقتًا أطول في النسق الأساسي، لذلك فإن تطورها يعطي لمحة عن الحد الأدنى للعمر).
المعادلات الكونية
يمكن تحديد عمر الكون بقياس ثابت هابل اليوم، والاستقراء العكسي في الزمن مع البيانات المرصودة لقيمة معامل الكثافة (Ω). قبل اكتشاف وجود المادة المظلمة كان يُعتقد بنموذج هيمنة المادة على الكون (كون آينشتاين-دو ستير، المنحنى الأخضر). لاحظ أن كون دو ستير له عمر لانهائي، بينما للكون المغلق أحدث عمر.

ترتبط مشكلة قياس عمر الكون ارتباطًا وثيقًا مع مشكلة حساب قيم المقاييس الكونيّة. تُنفذ تلك العمليّة اليوم في سياق نموذج «لامبدا-سي دي إم» حيث يُعتقد أن الكون يحتوي: مادة طبيعية (تناسقية)، ومادة مظلمة، وإشعاع (فوتونات ونيوترينو)، وثابتًا كونيًا. المساهمة الجزئيّة لكل من هذه القيم لكثافة الطاقة الكونيّة يُحسب خلال مقاييس الكثافة Ωm, Ωr, and ΩΛ. يمكن وصف نموذج «لامبدا-سي دي إم» عن طريق عدد من المعادلات، وهناك ثلاث معادلات/ معاملات/مقاييس هن الأكثر أهمية لحساب عمر الكون، بالإضافة لمعادلة/مقياس هابل Hubble parameter. إذا حصل المرء على قياسات دقيقة لتلك المقاييس، فبإمكانه الحصول على عمر الكون باستخدام معادلة فريدمان، وهي معادلة تربط معدل التغيّر في عامل التحجيم مع محتوى المادة في الكون. وبقلب تلك المعادلة يمكننا حساب التغير في الزمن لكل تغير في عامل التحجيم وبالتالي حساب العمر الكليّ للكون عن طريق تلك المعادلة:

    t 0 = 1 H 0 F ( Ω r , Ω m , Ω Λ , … ) {\displaystyle t_{0}={\frac {1}{H_{0}}}F(\Omega _{r},\Omega _{m},\Omega _{\Lambda },\dots )} {\displaystyle t_{0}={\frac {1}{H_{0}}}F(\Omega _{r},\Omega _{m},\Omega _{\Lambda },\dots )}

حيث H0 هي قانون هابل، ووظيفة F تعتمد على المساهمة الجزئيّة في محتوى الطاقة الكونيّ القادم من مصادر مختلفة. الملاحظة الأولى التي يمكن استنتاجها من تلك المعادلة هي أن قانون هابل يتحكم في عمر الكون، مع تصحيح يأتي من محتوى المادة والطاقة. وبذلك يكون القياس المبدئيّ لعمر الكون معتمدًا على «زمن هابل Hubble time»، عكسيّة قانون هابل. وباعتبار قيمة H0 تساوي نحو 68 كيلومتر/ثانية/فرسخ، يكون زمن هابل مساويًا لـ1/H0 أي 14.4 مليار سنة.

وللحصول على رقم أكثر دقة، يجب حساب معامل التصحيح F. وفي العموم يجب أن يحدث هذا عدديًا، ونتائج مدى قيم المعامل الكونيّ موضحة بالشكل. بالنسبة لقيم بلانك (Ωm, ΩΛ) = (0.3086, 0.6914) موضحة في الجزء العلوي من ناحية اليسار من الشكل، ومعامل التصحيح هنا يساوي 0.956. بالنسبة لكون مسطح بلا ثابت كونيّ المعبر عنه بالنجمة الموجودة في الجزء السفلي من ناحية اليمين، معامل التصحيح يساوي F = 2⁄3 وهو أصغر كثيرًا، وبالتالي يكون الكون أصغر عمرًا إذا كانت قيمة قانون معامل هابل ثابتة.

وبعيدًا عن «مركبة بلانك الفضائيّة»، كان «مسبار ويلكينسون لتباين الأشعة الكونية» أداة حساب العمر الدقيق للكون، بالرغم من أهمية تضمين قياسات أخرى للحصول على أدق رقم. قياسات «إشعاع الخلفية الكونية الميكروي» جيدة جدًا في حد محتوى المادة Ωm ومعامل الانحناء Ωk، إلا أنها ليست مؤكدة في حالة Ωk لأن الثابت الكونيّ يصبح مهم في حالة «الانزياح نحو الأحمر redshift» القليلة. ويظل القياس الأكثر دقة لعمر الكون يأتي من «مستعر أعظم نوع Ia» حيث يؤدي جمع تلك القياسات معًا إلى قيمة أكثر قبولًا لعمر الكون المشار إليه سابقًا.

يجعل الثابت الكونيّ الكون أكبر عمرًا مع تثبيت قيم المقاييس الأخرى. وهذا مهم، لأنه قبل قبول الثابت الكونيّ، كان نموذج الانفجار العظيم لا يفسر عمر بعض التجمعات الكرويّة في مجرة درب التبانة والتي يظهر أن عمرها أكبر من عمر الكون المقاس بمقياس هابل باعتبار أن الكون يتكون من مادة فقط. فأًصبح عمر الكون أكبر بدخول الثابت الكونيّ كما تمكنا من تفسير ظواهر أخرى غير المادة في الكون.
مسبار ويلكينسون لتباين الأشعة الكونية
استطاع مشروع «مسبار ويلكينسون لتباين الأشعة الكونية» التابع لوكالة ناسا القائم على تسجيل البيانات على مدار تسع سنوات، أن يقدّر عمر الكون عام 2012 بنحو (13.772±0.059)×109 من السنوات (أي 13.772 مليار سنة، مع احتماليّة زيادة أو نقص بنحو 59 مليون سنة). لكن هذا القياس يقوم على افتراض أن النموذج الذي استخدمه المشروع صحيح؛ فهناك قياسات أخرى يمكنها أن تعطينا قيم مختلفة. فافتراض وجود خلفية إضافيّة أو جسيمات نسبيّة -على سبيل المثال- يمكن أن يزيد من الخطأ في القياس.يُجرى القياس باستخدام موقع أول قيمة موجة صوتيّة في الخلفيّة الماكرويّة لطيف القوة، لتحديد حجم سطح الفصل (حجم الكون في وقت الاندماج). ويعتبر زمن سفر الضوء لهذا السطح (الذي يختلف تبعًا للأبعاد المستخدمة) مصدر لعمر موثوق للكون. وبافتراض موثوقيّة النماذج المستخدمة في القياس، يتبقى هامش للخطأ يقدّر بنحو 1%.
بلانك
في عام 2015، قدّرت مؤسسة بلانك عمر الكون بنحو 13.813±0.038 مليار سنة، في نفس إطار الاحتماليّة السابقة ولكنه أعلى قليلًا من قياس «مسبار ويلكينسون لتباين الأشعة الكونية». وبدمج قياس بلانك مع البيانات الخارجيّة يصبح قياس عمر الكون (13.799±0.021)×109 سنة.
افتراضات بمسلمات متينة

لا يكون قياس عمر الكون صحيحًا إلا عندما تكون الافتراضات التي بُنيت عليها تلك النماذج صحيحة. ويشار إليها بـ«المسلّمة المتينة strong priors» وهي محاولة تخليص النموذج من الأخطاء المحتملة للحفاظ على صحة النتائج المستنتجة من البيانات الملحوظة. وعلى الرغم أن تلك الطريقة لا تعمل في كافة الحالات، يمكننا اعتبار النتائج التي توصل إليها النموذج صحيحة مع قدر من الخطأ يكمن في الأدوات المستخدمة في القياس.

عمر الكون بناءً على بيانات بلانك 2015 فقط يقدّر بنحو 13.813±0.038 مليار سنة (القياس المقدّر بنحو 13.799±0.021 مليار سنة يستعمل مسلّمات/قبليّات غوسيان Gaussian priors المبنيّة على قياسات من دراسات أخرى لتحديد الاحتماليّة). يمثل الرقم قياس دقيق (مباشر) لعمر الكون (الطرائق الأخرى تشمل قانون هابل وعمر أقدم نجم في التجمعات الكرويّة إلخ..). ومن الممكن استخدام طرائق مختلفة لتحديد نفس المقياس (عمر الكون في هذه الحالة) والوصول لإجابات مختلفة بلا تداخل في الأخطاء. ولتجنّب تلك المشكلة، من الأفضل إيضاح نوعين من الاحتماليّات: واحدة متعلِّقة بالقياس الفعليّ والأخرى بالأخطاء النظاميّة في النموذج المستخدم.

من العناصر المهمة في تحليل بيانات قياس عمر الكون استخدام الإحصاءات البايزيّة Bayesian statistics والتي توفق النتائج تبعًا للقبليّات/النماذج. يساعد ذلك في منح كميّة لكل الاحتماليّات في دقة القياسات بسبب استخدام نموذج معيّن.
التاريخ

بدأ ظهور مفهوم أن عمر الأرض يقدّر بملايين السنين في القرن الثامن عشر. اعتقد العلماء ف القرن التاسع عشر وفي بدايات القرن العشرين أن الكون ثابت ولانهائيّ مع بعض النجوم التي تمضي وتذهب، إلا أن التغيرات الكبيرة ليس لها مكان في الكون في نظرهم.

كانت النظريّة العلميّة الأولى التي تشير إلى عمر الكون باعتباره منتهي هي "الديناميكا الحرارية" المصاغة في منتصف القرن التاسع عشر. يُلزمنا مفهوم «الإنتروبيا» بأن نظن أن الكون منتهي، لأنه إن لم يكن كذلك، سيكون لكل الموجودات به نفس درجة الحرارة، وبالتالي لن يكون هناك نجوم أو حياة.

نشر ألبرت آينشتاين عام 1915 نظريته في النسبية العامة

وفي عام 1917 وضع النموذج الكونيّ الأول بناءً على نظريّته. ولكي يكون متسقًا مع مفهوم الكون الثابت وضع أينشتاين ما سمّاه لاحقًا بـ«الثابت الكونيّ» في معادلاته. وفي عام 1922 قام ألكساندر فريدمان Alexander Friedmann، وبعدها بخمس سنوات جورج لامتري Georges Lemaître، باستخدام نظريّة آينشتاين، تمكنوا من إظهار أن الكون ليس ثابتًا ولكنه يتمدد ويتقلّص. ثم زعزع آرثر إدنغتون Arthur Eddington نموذج آينشتاين بأن الكون ثابت بعد ذلك.

الرصد الأول المباشر الذي لمّح بأن عمر الكون منتهي جاء من ملاحظة سرعة الانحسار، والتي لاحظها فيستو سليفر Vesto Slipher بالإضافة لبُعد السديم (المجرات) والتي لاحظها إيدوين هابل في عمر منشور عام 1929.

استطاع هابل مع غيره حل مشكلة النجوم المفردة في بدايات القرن العشرين، بعد أن حددوا أنها كانت مجرات مشابهة لدرب التبّانة ولكنها مختلفة عنها. وكانت تلك المجرات بعيدة للغاية وكبيرة جدًا. أظهرت الأطياف المأخوذة لهذه المسافات «انزياح نحو الأحمر» في الخطوط الطيفيّة من المحتمل أن تكون بسبب تأثير دوبلر، مما يشير إلى أن هذه المجرات كانت تتحرك بعيدًا عن الأرض.

وكلما زاد بُعد هذه المجرات وازدادت خفوتًا كلما زاد الانزياح نحو الأحمر، أي أنها كانت تتحرك بسرعة أكبر. كان هذا هو الدليل المباشر الأول على أن الكون يتمدد وليس ثابتًا. جاء أول تقدير لعمر الكون من حساب متى ازدادت سرعة كل الجسيمات من نفس النقطة. وكانت القيمة الأوليّة التي قال بها هابل صغيرة جدًا، حيث كان يُعتقد أن المجرات أقرب مما هي عليه في الواقع.

يُعتبر ثابت هابل أول قيمة معقولة ودقيقة للتعبير عن معدل تمدد الكون، صاغها في عام 1958 عالم الفلك آلان سانداج Allan Sandage، وجاء قياسه قريبًا جدًا من القيمة الموافَق عليها اليوم.

لم يثق سانداج في نتائجه وقت الاكتشاف كما لم يثق بها آينشتاين؛ حيث إن نتيجته لم تكن لتتوافق مع العمر المزعوم للكون بنحو 25 مليار سنة في عصره، وهو عمر أقدم النجوم. كرر سانداج وغيره من الفلكيّين هذه الحسابات لمحاولة تقليل ثابت هابل وبالتالي زيادة عمر الكون. وصل الأمر لاقتراح سانداج نظريات جديدة في علم أًصل الكون لتوضيح عدم الاتساق. وقد حُل الموضوع أخيرًا عن طريق تحسّن في النماذج النظريّة التي تقدّر عمر النجوم. ففي عام 2013، باستخدام آخر النماذج المقدّرة لتطور النجوم كان عمر أكبر نجم نحو 14.46±0.8 مليار سنة.

أُعلن اكتشاف إشعاع الخلفية الكونية الميكروي عام 1965.

وضع حدًا للايقين العلميّ في مسألة تمدد الكون. وكانت نتيجة تصادفيّة لعمل فريقين يبعدان عن بعضهما نحو 96.5 كيلومتر. حاول كل من آرنو بينزياس Arno Penzias وروبرت ويلسون Robert Wilson أن يحددوا صدى موجات الراديو باستخدام مستشعرة عاليّة الحساسيّة. رصدت المستشعرة ضجيجًا ثابتًا غريبًا منخفضًا من منطقة الموجات الصُغْرِيّة والتي كانت تنتشر في السماء وكانت حاضرة في الليل والنهار. تيقنوا بعد الاختبار أن الإشارة لم تأتِ من الشمس أو الأرض بل كانت من خارج مجرتنا كلها. وفي نفس الوقت قام فريق آخر مكون من كل من روبرت إتش. دك Robert H. Dicke وجيم بيبلز Jim Peebles وديفيد ويلكنسون David Wilkinson، قاموا بمحاولة لتحديد مستوى الضجيج المنخفض الذي ربما يكون متبقيًا من الانفجار العظيم وإثبات مدى صحة هذه النظريّة. أدرك الفريقان أن الضجيج المرصود كان في الواقع إشعاع متبقي من الانفجار العظيم، وكان هذا دليلًا قويًا أن النظريّة صحيحة. ثم توافدت الأدلة لتدعيم هذا الاستنتاج منذ ذلك الوقت، وعُدلت أكثر من مرة للوصول بعمر الكون للقيمة الصحيحة الحاليّة.

المركبات الفضائيّة الخاصة بـ«مسبار ويلكينسون لتباين الأشعة الكونية» المنطلقة عام 2001، وبلانك المنطلقة في 2009، أنتجت بيانات تحدد ثابت هابل وعمر الكون بمعزل عن بعد المجرات، وبذلك أزالت أكبر مصدر للخطأ.
انظر أيضا

    عمر كوكب الأرض
    علم الكون

=========

 
عمر كوكب الأرض  من ويكيبيديا، الموسوعة الحرة
كوكب الأرض كما يرى من أبوللو 7

يبلغ عمر كوكب الأرض حوالي 4.54 ± 0.05 مليار سنة (4.54 × 109 سنة ± 1%).
قد يمثل هذا العمر عمر تنامي الأرض، أو تكوين اللب، أو المادة التي تشكلت منها الأرض. 

 

=وقد تم تحديد هذا العصر حسب العمر الإشعاعي للمواد والذي يتم حسابه عبر المواد التي يتكون منها النيزك

وتناسقها مع الأجسام التي تكون أعمارها من أقدم العينات المعروفة من الأرض والقمر. بالمقارنة مع كوكب الأرض فإن الشمس أكبر عمراً بثلاثين مليون سنة إذ أنها تبلغ من العمر 4.57 مليار سنة.

بعد الثورة العلمية وتطوير علم قياس الإشعاع، وقياسات الرصاص في اليورانيوم والمعادن الغنية أظهرت أن بعض هذه المواد كان عمرها يزيد على مليار سنة.
وأقدم هذه المعادن بعد تحليلها حتى الآن هي بلورات صغيرة من الزركون من تلال جاك غرب أستراليا يبلغ عمرها ما لا يقل عن 4.404 مليار سنة. وبمقارنة كتلة وسطوع الشمس مع مجموع الكتل من النجوم الأخرى، يبدو أن النظام الشمسي لا يمكن أن يكون أقدم بكثير من تلك الصخور. إن التضمينات الغنية في الكالسيوم والألمنيوم والتي هي أقدم المكونات الصلبة المعروفة داخل النيازك التي تشكلت داخل النظام الشمسي تبلغ من العمر 4.567 مليار سنة،

التوقعات الناتجة من نماذج التراكم المختلفة تتراوح أعمارها ما بين بضعة ملايين إلى نحو 100 مليون سنة حيث أنه من الصعب تحديد عمر الأرض بدقة. كما أنه من الصعب تحديد أقدم الصخور على الأرض بالضبط.

 
محتويات
    1 تطور المفاهيم الجيولوجية الحديثة
    2 الحسابات المبكرة
    3 مراجع
    4 وصلات خارجية

تطور المفاهيم الجيولوجية الحديثة

عن طريق دراسة طبقات الصخور الأرضية، أدرك علماء الطبيعة أن الأرض ربما مرت بالعديد من التغييرات أثناء تاريخها. غالبًا ما تحتوي هذه الطبقات على بقايا متحجرة لكائنات غير معروفة، ما قاد البعض لتفسير تطور الكائنات الحية من طبقة إلى أخرى.

في القرن السابع عشر، كان نيكولاس ستينو من أوائل علماء الطبيعة الذين أدركوا أهمية العلاقة بين البقايا الأحفورية والطبقات الصخرية. دفعته ملاحظاته إلى صياغة مفاهيم مهمة لوصف طبقات الأرض (أي «قانون التراكب» و«مبدأ الأفقية الأصلية»). في تسعينات القرن الثامن عشر، افترض ويليام سميث أنه إذا احتوت طبقتان صخريتان في مواقعين مختلفين على أحافير متشابهة، فمن المعقول جدًا أن يكون عمرهما متماثلًا. بناءً على هذه الملاحظات، استنتج ابن أخ سميث وطالبه، جون فيليبس، لاحقًا أن عمر الأرض هو 96 مليون سنة تقريبًا.

في منتصف القرن الثامن عشر، اقترح عالم الطبيعة ميخائيل لومونوسوف أن الأرض قد نشأت بشكل منفصل عن بقية الكون، وقبل مئات الآلاف السنين من ولادته. كانت أفكار لومونوسوف تخمينية في الغالب. في عام 1779، حاول كومت دو بوفون حساب عمر الأرض عن طريق تجربة: صنع كرة صغيرة تشبه الأرض في تكوينها ثم قاس معدل تبريدها. قاده ذلك إلى تقدير أن عمر الأرض هو 75000 سنة تقريبًا.

استخدم علماء الطبيعة الآخرون هذه الفرضيات لاستكشاف تاريخ الأرض، على الرغم من أن نتائجهم الزمنية لم تكن دقيقة لأنهم لم يكونوا على علم بالمدة اللزمة لتكون الطبقات الأرضية. في عام 1830، قام الجيولوجي تشارلز ليل، بناءً على الأفكار الموجودة في أعمال جيمس هوتون، بالترويج لفكرة أن المعالم الأرضية تتغير بشكل دائم، إذ تتعرض للتآكل والتباين باستمرار، وأن معدل هذا التغيير ثابت تقريبًا. مثّل هذا تحديًا لوجهة النظر التقليدية، التي تقول إن تاريخ الأرض تهيمن عليه كوارث متقطعة. تأثر العديد من علماء الطبيعة بأفكار ليل ليصبحوا من أتباع «الوتيرة الواحدة» الذين اعتقدوا أن التغييرات الأرضية ثابتة وموحدة.
الحسابات المبكرة
في عام 1862، نشر الفيزيائي ويليام طومسون، البارون كلفن الأول، حسابات استنتج فيها أن عمر الأرض يتراوح بين 20 مليون و400 مليون سنة. افترض أن الأرض تشكلت من جسم منصهر تمامًا، وحسب الزمن اللازم لانخفاض تدرج درجة الحرارة بالقرب من السطح إلى قيمته الحالية. لم تشمل حساباته الحرارة الناتجة عن الاضمحلال الإشعاعي (وهي عملية لم تكن معروفة آنذاك) أو الحمل الحراري داخل الأرض، الذي يسمح لدرجة الحرارة في طبقة الوشاح العلوي بالبقاء مرتفعةً لفترة أطول، ما يسمح بالحفاظ تدرج حراري مرتفع في القشرة لفترة أطول. وما زاد الأمر سوءًا هي تقديرات كلفن لعمر الشمس، التي استندت على الناتج الحراري للشمس والنظرية القائلة بأن مصدر طاقة الشمس هو طاقة الجاذبية الكامنة؛ قدر كلفن أن عمر الشمس هو 20 مليون سنة تقريبًا.لم يقتنع علماء الجيولوجيا على غرار تشارلز ليل بمثل هذا التقدير القصير لعمر الأرض. بالنسبة لعلماء الأحياء، حتى 100 مليون سنة بدت فترة قصيرة لعمر الأرض. في نظرية التطور لتشارلز داروين، تتطلب عملية التباين العشوائي الوراثي مع عملية الاصطفاء الطبيعي التراكمي فترات زمنية طويلة، وقد صرح داروين أن تقديرات اللورد كلفن غير كافية على ما يبدو. وفقًا لعلم الأحياء الحديث، بدأ التاريخ التطوري الكلي منذ بداية الحياة حتى اليوم قبل 3.5 إلى 3.8 مليار سنة، وهي الفترة الزمنية التي انقضت منذ ظهور آخر سلف لجميع الكائنات الحية وفقًا للتأريخ الجيولوجي.في محاضرة أُجريت عام 1869، هاجم المدافع الكبير عن داروين، توماس إتش. هكسلي، حسابات طومسون، مشيرًا إلى أنها دقيقة في حد ذاتها ولكنها تستند على افتراضات خاطئة. قدم الفيزيائي هيرمان فون هيلمهولتز (عام 1856) وعالم الفلك سايمون نيوكومب (عام 1892) حساباتهما الخاصة، وقدرا أن عمر الأرض هو 22 و18 مليون سنة، على التوالي: قدرا بشكل مستقل الزمن اللازم لتشكل الشمس وصولًا إلى قطرها وسطوعها الحاليين من سديم الغاز والغبار الذي وُلدت منه. كانت نتائجهما متوافقةً مع حسابات طومسون. مع ذلك، فقد افترضا أن مصدر سطوع الشمس هو طاقة الجاذبية الكامنة. لم تكن عملية الاندماج النووي للشمس معروفةً بعد.

دعم علماء آخرون حسابات طومسون. اقترح ابن تشارلز داروين، عالم الفلك جورج إتش. داروين، أن الأرض والقمر قد انفصلا في الماضي بعدما كانا جرمًا منصهرًا واحدًا. حسب داروين مقدار الوقت الذي اللازم لإبطاء فترة دوران الأرض حتى 24 ساعة نتيجة الاحتكاك المدّي. أضافت قيمته البالغة 56 مليون سنة دليلًا إضافيًا على أن طومسون كان على المسار الصحيح.

كان آخر تقدير قدمه طومسون، في عام 1897، هو أن عمر الأرض «أكثر من 20 مليون عامًا وأقل من 40 مليون عام، وربما أقرب بكثير إلى 20 مليون عامًا». في عامي 1899 و1900، قام جون جولي بحساب المعدل اللازم لتراكم الملح في المحيطات نتيجة عمليات التعرية، واستنتج أن عمر المحيطات يتراوح بين 80 و100 مليون عام.

==========
علم الكون  من ويكيبيديا، الموسوعة الحرة

 
علم الكون  Universum.jpg
صنف فرعي من      فيزياءالاطلاع ومراجعة البيانات على ويكي داتا
جزء من     ما وراء الطبيعة — فيزياء فلكيةالاطلاع ومراجعة البيانات على ويكي داتا
يمتهنه     عالم كونياتالاطلاع ومراجعة البيانات على ويكي داتا
المواضيع   طاقة مظلمة — سائل مظلمالاطلاع ومراجعة البيانات على ويكي داتا

 
تم إكمال حقل هابل العميق الأقصى في سبتمبر عام 2012 ويظهر أبعد مجرات تم تصويرها على الإطلاق. باستثناء بضع نجوم في المقدمة (وهي الساطعة ويمكن التعرف عليها بسهولة فقط لأن لديهم طفرات الحيود)، كل بقعة من الضوء في الصورة هي مجرة فردية، وبعضها قديمة قدم 13.2 مليار سنة. ويقدر الكون المنظور بأنه يحتوي على أكثر من 200 مليار مجرة.

الكونيات أو علم الكون

(بالإنجليزية: Cosmology)‏ (من الإغريقية: κόσμος وتعني "عالم" و-λογία والتي تعني "دراسة" بمعنى خطبة أو محاضرة وهي تلحق بمعظم الكلمات لتشير إلى العلم الذي يدرس هذا الموضوع). هو العلم الذي يدرس أصل ونشأة وتاريخ ومحتويات وتطور الكون، ودراسة البنية الواسعة للفضاء، بكل ما فيه من مادة وطاقة. ورغم حداثة هذا العلم من حيث تداخله مع الفيزياء الحديثة فإن جذوره تمتد إلى العصور القديمة بمعالجاتها الفلسفية والدينية والأسطورية الغيبية (ميتافيزيقية) لموضوع أصل الكون.
محتويات

    1 لمحة تاريخية
    2 مكونات الكون
    3 تجانس وتوحد خواص الكون
    4 الاستواء
    5 نموذج الكون لجولد
    6 انظر أيضًا
    7 مراجع
    8 وصلات خارجية

لمحة تاريخية
الجدول الزمني للطبيعة
عودة التأين
عصر طغيان المادة
تسارع التوسع
الماء
حياة وحيدات الخلية
التركيب الضوئي
حياة
متعددة الخلايا
الفقاريات
العصور المظلمة

الكون (−13.80)

النجوم القديمة

المجرة القديمة

الكوازار القديم/ثقب أسود فائق

أوميجا قنطورس

المرأة المسلسلة

أذرع درب التبانة

تشكل NGC 188 العنقودية

رجل القنطور

الأرض/المجموعة الشمسية

أشكال الحياة القديمة

الأكسجين القديم

الأكسجين الجوي

التكاثر الجنسي

الحيوانات/النباتات البدائية

الانفجار الكامبري

الثدييات البدائية

القرود البدائية
الـحــيــاة
تأشير ونقر
(مليار سنة مضت)

تحتوي الصورة أعلاه على روابط قابلة للنقر
(أنظر أيضا: جدول زمني للحياة.)

علم الكون فرع حديث العهد نسبياً من العلوم الطبيعية، إلا أنه يتناول بعضاً من أقدم الأسئلة التي طرحتها البشرية، على غرار: هل الكون غير محدود؟ هل هو موجود منذ الأزل؟ وإذا كان الجواب بالنفي، فكيف ظهر الكون إلى الوجود؟ وهل سينتهي يوماً ما؟ ومنذ القدم يسعون البشر إلى بناء إطار مفاهيمي من نوع ما للإجابة عن الأسئلة المتعلقة بالكون وبعلاقتهم به.

كانت أُولى النماذج لدراسة علم الكون عبارة عن خرافات، إذ كانت أغلب المحاولات القديمة مبنية بالأساس على شكل من أشكال التجسيم (أي نسبة الصفات البشرية إلى الكائنات غير البشرية). وقد تضمنت بعض هذه المحاولات فكرة أن العالم المادي تُحركه كيانات ذات إرادة نافذة يمكنها أن تساعد البشرية أو تعوقها. فيما تضمنت البعض الآخر أن العالم المادي نفسه جامدا، ولكن يمكن لإله أو آلهة أن يتحكموا في مساره، في تلك الحالتين تميل خرافات الخلق إلى عزْو منشأ الكون إلى كيانات يمكن أن تفهم دوافعها -ولو جزئياً- من جانب البشر.

تعود جذور العلم الحديث إلى بلاد اليونان القديمة، بطبيعة الحال كان للإغريق آلهتهم وأساطيرهم، وكان كثير منها مستسقى من ثقافات مجاورة. لكن إلى جانب هذه العناصر التقليدية بدأ الإغريق في تأسيس نظام من مبادئ البحث العلمي، وكانو من أرسوا العلاقة بين السبب والنتيجة، كما أنهم أدركوا أن توصيف الظواهر المرصودة وتفسيرها يمكن صياغتهما بصورة رياضية أو هندسية، بدلاً من الاعتماد على مفهوم التجسيم.

خلال العصور المظلمة، لم تكن الثقافة المسيحية على معرفة بمعظم المعارف التي اكتسبها الإغريق، بَيْدَ أن هذه المعارف ازدهرت في العالم الاسلامي. نتيجة لذلك، كان التفكير المرتبط بدراسة الكون في أوروبا محدوداً خلال العصور الوسطى.

تمثل التطور العظيم التالي على الطريق نحو التفكير العلمي الحديث في دراسة الكون في ظهور إسحاق نيوتن (1642-1727)على الساحة. تمكن نيوتن من أن يبين في كتابه "المبادئ" (1687) أن الحركة الإهليليجية التي توصل إليها كبلر إنما هي نتيجة طبيعية لوجود قانون كوني عام للجاذبية.

بدأت الحقبة الحديثة لعلم الكون في السنوات الأولى من القرن العشرين، حين حدثت عملية إعادة صياغة كاملة لقوانين الطبيعة. طرح ألبرت أينشتاين (1879-1955) مبدأ النسبية، وبذا قوض مفهوم نيوتن عن المكان والزمان. ولاحقاً حلت النسبية العامة محل قانون الجذب العام لنيوتن. ولكن رغم أن هذه التطورات المفاهيمية قد مهدت الطريق، فإن الخطوات النهائية نحو الحقبة الحديثة لعلم الكون لم يضطلع بها الفيزيائيون النظريون، بل علماء الفلك القائمون على عمليات الرصد. ففي عام 1929، نشر إدوين هابل المشاهدات التي أدت بنا إلى الاعتقاد بأن الكون أخذ في التمدد، وأخيراً، في عام 1965 اكتشف آرنو بينزياس إشعاع الخلفية الكونية الميكروي الذي يعد دليلاً دامغاً على أن الكون بدأ بكرة نارية بدائية. أي "الانفجار العظيم".
مكونات الكون

أصبح لدى العلماء معرفة أفضل عن الكون. فبفضل التقدم العلمي والتكنولوجي وخاصة بعد تطور التلسكوبات البصرية والراديوية، أمكن التعرف بدقة إلى توزيع النجوم والأجرام السماوية في الكون. فالنجوم موجودة في الكون على شكل تجمعات هائلة كل تجمع يصل إلى بلايين النجوم وهذا التجمع الهائل من النجوم يدعى بالمجرة.

بواسطة التلسكوبات البصرية أمكن الكشف عن حوالي 600 مليون مجرة كما تم اكتشاف البلايين من المجرات بواسطة التلسكوبات الراديوية. فالشمس(والأرض وبقية الكواكب التي تدور حول الشمس) هي أحد النجوم في مجرتنا(مجرة درب التبانة)، التي يبلغ عدد نجومها 100 بليون نجمة. أن المسافة التي تفصل هذه المجرات عن بعضها البعض شاسعة جداً. ولقد تم الكشف عن بعض هذه المجرات البعيدة التي تبعد عن الارض 4500 مليون سنة ضوئية، أي أن الضوء الذي يسير بسرعة 300 ألف كيلو متر/ثانية يحتاج 4500 مليون سنة ليصل إلى الأرض. فالمجرات وما تحوي من نجوم وغبار وغازات (السديم) وما يدور حول النجوم من كواكب وتوابع وأجرام سماوية أخرى هي مكونات الكون.
تجانس وتوحد خواص الكون

أبسط المداخل لتطبيق مفاهيم النسبية العامة هو استخدام ما نشاهده من انتظام المقياس الكبير الملحوظ، فنحن نشاهد في المقاييس المساوية 1000Mpc ليس فقط كثافة متوسطة منتظمة ولكن نشاهد أيضاً انتظامات في خواص أخرى (مثل أنواع المجرات، كثافات مكوناتها، تركيبها الكيميائي وتركيبها النجمي). لذلك في المقياس الكبير ندرك ما يلي من السمات:

    الكون متجانس.
    الكون موحد الخواص حول كل نقطة، نعني بتوحد الخواص أنه من غير الممكن عند إجراء مشاهدات محلية التمييز بين أحد الاتجاهات في السماء واتجاه آخر (أي لا يوجد اتجاه مفضل). يمكن أن يكون الكون متجانساً وغير موحد الخواص، وذلك إذا كان الكون، مثلاً، يصاحبه مجال مغناطيسي كبير المقياس موجه ناحية أحد الاتجاهات في كل الأماكن وكانت قيمة هذا المجال متساوية في كل الأماكن. من ناحية أخرى، لا يمكن للكون غير المتجانس أن يكون موحد الخواص حول كل نقطة، وذلك لأن معظم قطع الكون أن لم يكن كلها سوف ترى سماءً متكتلة في أحد الاتجاهات وغير مكتملة في اتجاه آخر.
    الكون في حالة تمدد، تبدو كل المجرات مبتعدة عن مجرتنا (مجرة درب التبانة) بسرعة تتناسب طردياً مع بعدها. ويطلق على سرعة الابتعاد هذه اسم" جريان هابل". سرعة الابتعاد هذه تساهم في تأسيس فكرة توحد خواص الكون.

الاستواء
يُعتبر مفهوم "انعطاف الفضاء" أمرًا جوهريًا لـعلم الكون. وكون الكون "مستويًا" من الممكن أن يحدد مصيره النهائي؛ ما إذا كان سيتمدد إلى الأبد أو سينهار في نهاية المطاف ويرتد على عقبيه. وتم قياس هندسة الزمان والمكان بواسطة مسبار ويلكينسون لقياس اختلاف الموجات الراديوية (WMAP) ليتبين أنه مسطح تقريبًا. ووفقًا لنتائج وتحليلات مسبار ويلكينسون لقياس اختلاف الموجات الراديوية على مدار خمس سنوات، قرر مسبار ويلكينسون لقياس اختلاف الموجات الراديوية أن الكون مسطحًا، الأمر الذي ترتب عليه أن متوسط كثافة الطاقة في الكون تعادل الكثافة الحرجة (في نطاق هامش 1% من الخطأ). وهذا يعادل كثافة كتلة مقدارها 9.9 × 10−30 g/cm3، وهو ما يعادل فقط 5.9 بروتونات لكل متر مكعب.”
نموذج الكون لجولد
نموذج الكون لجولد هو نموذج كوني لـلكون. وفي هذا النموذج، يبدأ الكون مع الانفجار العظيم ويتسع لبعض الوقت، مع تزايد الاعتلاج وسهم الزمن الدينامي الحراري يشير إلى اتجاه الاتساع. وبعدما يصل الكون حالة منخفضة الكثافة، فإنه ينكمش مرة أخرى، ولكن يقل الاعتلاج الآن، ويتوجه سهم الزمن الدينامي الحراري في الاتجاه المعاكس، حتى ينتهي الكون في الانسحاق الشديد منخفض الاعتلاج وعالي الكثافة. ويُسمى النموذج على اسم عالم الكونيات توماس جولد، الذي اقترح النموذج في ستينيات القرن الماضي.
انظر أيضًا

    علم السماء والعالم
    نشوء عدمي
    علم الكون غير القياسي
    تشكل وتطور المجرات


=========

ج1وج2.شَرْحُ عِلَلِ التِّرْمِذِيِّ للإمام العالم الحافظ النّقّاد أبي الفرج عبد الرحمن بن أحمد بن رجب الحنبلي

شَرْحُ  عِلَلِ التِّرْمِذِيِّ  للإمام العالم الحافظ النّقّاد أبي الفرج عبد الرحمن بن أحمد بن رجب الحنبلي 736 هـ ـ 795هـ رحمه الله تعالى...